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Abstract
Estimating the proportion of positive examples
(i.e., the class prior) from positive and unlabeled
(PU) data is an important task that facilitates learn-
ing a classifier from such data. In this paper, we ex-
plore how to tackle this problem when the observed
labels were acquired via active learning. This intro-
duces the challenge that the observed labels were
not selected completely at random, which is the pri-
mary assumption underpinning existing approaches
to estimating the class prior from PU data. We an-
alyze this new setting and design an algorithm that
is able to estimate the class prior for a given active
learning strategy. Empirically, we show that our ap-
proach accurately recovers the true class prior on a
benchmark of anomaly detection datasets and that
it does so more accurately than existing methods.

1 Introduction
Positive and unlabeled (PU) learning [Elkan and Noto, 2008]
is a special case of binary classification where a learner only
has access to labeled positive examples and unlabeled exam-
ples. The unlabeled data contains both positive and negative
examples. PU data arises naturally in many different applica-
tions, such as anomaly detection, where the goal is to detect
abnormal examples in a dataset and one typically only has
access to normal and unlabeled data to construct the classi-
fier [Trittenbach et al., 2019].

The typical PU learning setup assumes the learner is given
a PU dataset with a fixed set of observed positive labels (i.e., it
cannot acquire any new labels). Moreover, it is commonly as-
sumed that the observed positive labels were “selected com-
pletely at random”. This is known as the SCAR assumption
and it states that the probability of observing a positive exam-
ple’s label is a constant [Elkan and Noto, 2008]. Under the
SCAR assumption, there are a number of different ways to
enable learning from PU data; see Bekker and Davis [2020]
for an overview. One of the most prominent ones involves es-
timating the class prior from data [Du Plessis and Sugiyama,
2014; du Plessis et al., 2015; Bekker and Davis, 2018;
Jain et al., 2016b; Jain et al., 2016a].

This paper explores a different setting that combines PU
learning with active learning. The learner initially has ac-

cess to only unlabeled data, and positive labels are gradually
acquired using an active learning strategy. In anomaly detec-
tion applications, for instance, one often starts with a com-
pletely unlabeled dataset and labels are acquired via active
learning because the labeling process is costly [Vercruyssen
et al., 2018]. Because anomalies are rare events and not well-
understood, the user almost always ends up labeling only nor-
mal examples (i.e., examples from the positive class). An-
other class of problems where active learning would only re-
turn positive labels arises when measuring the interestingness
of ads, likes, or Facebook friend suggestions based on click
data. Using active learning introduces the challenge that the
SCAR assumption no longer holds as the active learning strat-
egy has a clear bias when selecting examples to be labeled.

This paper analyzes the problem of estimating the class
prior from PU data where the positive labels were acquired
using active learning. The class prior is the proportion of pos-
itive examples in the data. We make four contributions. First,
we show how to estimate the class prior using each exam-
ple’s propensity score, which is the probability that a positive
example is selected by the active learning strategy to be la-
beled. Second, we prove that the estimate of the class prior
converges to the true class prior. Third, we propose a method
called CAPE (Class prior estimation in Active Pu lEarning)
for estimating the class prior in practice. Finally, we empiri-
cally evaluate CAPE in the context of anomaly detection. The
experiments highlight that CAPE is able to make more accu-
rate estimates of the class prior than current state-of-the-art
methods.

2 Preliminaries
In a PU learning, one example can be seen as a triple
{x, y, s}, where x is the vector of features, y the binary class
and s indicates if the example has been selected to be labeled.
More formally, a PU dataset XD is a set of examples in a
probability space (X ,=, µ). Here, X = X × Y × S , where
X = Rd is the feature space, Y = {0, 1} is the class label
space, and S = {0, 1} is label choice space. Finally, = repre-
sents a σ-algebra over X and µ = µ(x, y, s) is the probability
distribution over possible triples drawn from X .

In PU learning, the true label of any labeled example is as-
sumed to be positive. It is widely assumed that labels are se-
lected completely at random (SCAR), meaning that the prob-
ability of an example to be labeled depends only on its true
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label. With the introduction of the label frequency c, the pro-
portion of labeled examples, the class prior µ(y = 1) can be
estimated in a straightforward fashion as µ(s = 1)/c [Bekker
and Davis, 2018; Bekker and Davis, 2020].

More recent work relaxes the SCAR assumption by assum-
ing that the labels are selected at random (SAR). This means
that the probability of an example to be labeled depends not
only on its true label but also on its features [Bekker et al.,
2019]. The class prior of a dataset is now computed as a
function of the propensity score [Bekker et al., 2019], where
an example’s propensity score e(x) = µ(s = 1|x, y = 1) is
defined as the probability that the example is labeled. In our
setting, however, the examples are only labeled when they
are queried by the active learning strategy, which we show
slightly alters the definition of propensity score.

3 Class Prior Estimation in Active PU
Learning

This paper tackles the following problem:
Given: a dataset XD = {x1, . . . , xn} ∼i.i.d. µX drawn

i.i.d. from the population with distribution µX ; a tra-
dition classifier h trained on PU data; an active learning
strategy to obtain k labeled examples;

Estimate: the class prior of XD.
Applying the active learning strategy results in a set of k la-

beled positive examples and n− k unlabeled examples. Sub-
section 3.1 describes how to use this partially labeled data to
estimate the class prior. However, computing the class prior
requires knowing the propensity scores, which is the prob-
ability of the example being selected by the active learning
strategy to be labeled. Subsection 3.2 discusses how to tackle
this issue. Finally, Subsection 3.3 shows that if the computed
propensity scores are accurate, the estimated class prior theo-
retically converges to the true class prior.

3.1 Estimating the Class Prior
For now we assume that the propensity scores are known.
Intuitively, the class prior can be derived by combining the
proportion of examples labeled positive by the user, and the
expected proportion of positive examples among the remain-
ing unlabeled examples:

µ(y = 1) =Exµ(y = 1|x) =

Ex[s(x)] + Ex

[
(1− s(x))

y
∧

(1− e(x))

1− y
∧
e(x)

]
,

where s(x) is 1 if the example has been labeled and 0 oth-
erwise, and y

∧
= h
∧

(x) = µ (y = 1|x, e(x), y
∧

) ∈ (0, 1) is the
probability that the example x belongs to the positive class
according to the trained classifier h trained on the PU data.

We derived the previous identity from Bekker et al. [2019]
by applying the mean operator on both sides. The main as-
sumption is that h returns accurate estimates of the class
probabilities. Thus, class prior estimates also depend on the
correctness of this assumption. Roughly speaking, a labeled
example contributes fully towards the positive class prior,
while an unlabeled example only contributes its probability
of being positive weighted by its probability of being labeled.

3.2 Estimating the Propensity Scores
The propensity score for an example x is the proportion of
all datasets containing x that can be drawn from the distri-
bution µX , in which x’s label is observed. Whether x’s la-
bel is observed depends on both the dataset and the active
learning strategy: whether x is selected to be labeled will
depend on whether another more informative unlabeled ex-
ample (according to the active learning strategy) is present
in the dataset. This is further complicated by the fact that,
in practice, we only have one dataset from which to estimate
propensity scores.

Conceptually an example’s propensity score can be com-
puted as:

e(x) = µ(s = 1|x, y = 1)

=

∫
Rd

µ(s = 1|x, y = 1, X) dµ(X|x, y = 1)

=
∑

{X⊂Rd : x∈X}

e(x|X) · dµ(X|x, y = 1), (1)

where the sum is over the infinitely many possible datasetsX
that can be drawn from Rd, dµ(X|x, y = 1) is the infinites-
imal probability to draw a specific sample X , and e (x|X)
is what we call the grounded propensity score given the ob-
served dataset X . Our key insight is that for a fixed dataset
X , e(x|X) is either 0 or 1: either the example is in the top-
k most informative examples of the dataset according to the
active learning strategy (1) or it is not (0).1

Next, we tackle the problem of summing over infinitely
many possible datasets. This can be solved by decomposing
the problem into: (1) an inner loop summing over all sub-
sets of Rd with a given cardinality m, and (2) an outer loop
summing over all possible cardinalities.

Inner loop: summing over the subsets. Considering only
those subsets of Rd with cardinality m, we define:

em(x) :=
∑

{X⊂Rd,|X|=m,x∈X}

e(x|X)·dµ(X|x, y = 1). (2)

Taking the sum over all possible subsets of cardinality m
poses two questions. First, is this sum actually countable,
even if the set is apparently uncountable? And second, if so,
how can we compute it? The countability of the sum is proven
using the following theorem.

Theorem 1. Let I be any set, g : I → [0,+∞). Let’s define

∑
i∈I

g(i) = sup

{∑
i∈J

g(i) : J ⊂ I, |J | < +∞

}
.

Then, if
∑

i∈I g(i) < +∞, the set

A = {i ∈ I : g(i) 6= 0}

is at most countable.

1That is under the assumption that there is no randomization in
the active learning strategy or learning algorithm.
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Proof. Let’s consider ε > 0 and Aε = {i ∈ I : g(i) > ε}.
Without loss of generality, we suppose that |Aε| = +∞ and
that its cardinality is countable. Then there exists a sequence
{xn}n∈N ⊆ Aε such that g(xn) > ε for all n ∈ N. So, since
ε is a constant, the inequality

∞∑
n=1

g(xn) >
∞∑

n=1

ε = +∞

holds. This leads to a contradiction:

sup

{∑
i∈J

g(i) : J ⊂ I, |J | < +∞

}
= +∞.

As a result the setAε is finite. Because of the arbitrary choice
of ε, let’s choose ε = 1

t , for t ∈ N. Now it is evident that

A = {i ∈ I : g(i) 6= 0} =
⋃
t∈N

A 1
t

is countable, since it is countable union of finite sets.

To answer the second question, the sum over all possible sub-
sets with cardinality m can be approximated through a se-
quence of r subsets. Since the sum is actually countable,
there exists a sequence of sets X(m1), . . . , X(mr), . . . with
non-zero values such that

mr∑
i=m1

e
(
x|X(i)

)
· dµ

(
X(i)|x, y = 1

)
r→∞−−−→ em(x).

Subsections 4.1 and 4.2 explain how to compute this sequence
in practice.
Outer loop: summing over the cardinalities. Next, we
need to sum over all possible cardinalities to arrive at the
propensity score for an example x. So, we define

em(x) :=

m∑
j=1

ej(x)

where ej(x) is defined in Equation 2. This sequence con-
verges to the actual propensity score for m going to +∞.

Proof.
m∑
j=1

ej(x) =

m∑
j=1

∑
{X⊂Rd : |X|=j, x∈X}

e(x|X) · dµ(X|x, y = 1)

=
∑

{X⊂Rd}

e(x|X) · dµ(X|x, y = 1)

m∑
j=1

1{|X|=j, x∈X}(X)

=
∑

{X⊂Rd}

e(x|X) · dµ(X|x, y = 1)1⋃m
j=1{|X|=j, x∈X}(X)

−→
∑

{X⊂X , x∈X}

e(x|X) · dµ(X|x, y = 1) for m→∞.

So, theoretically, it is possible to determine m̃ and some small
error ε such that, for m̃ “large enough”,

‖em̃(x)− e(x)‖ =

∥∥∥∥∥∥
m̃∑
j=1

ej(x)− e(x)

∥∥∥∥∥∥ < ε.

Practical computation of the propensity scores. In prac-
tice, in order to compute the outer and inner loop of the sum
in Equation 1, we need to choose the parameters m and r.
Their values, however, are restricted by the observed dataset
XD: m is maximally equal to n and the r subsets can only be
drawn from XD. Moreover, computing the inner loop over
all possible subsets of a certain cardinality is prohibitively
expensive. For instance, if XD contains 2000 examples and
the cardinality is 1000, we would need to loop over > 10600

possible subsets. We circumvent this issue by applying stan-
dard counting techniques on the available dataset to directly
estimate em(x). Then, through an average approximation of
the probabilities, the inner loop can be completely avoided.
Section 4 explains this in detail.

3.3 Convergence to the true Class Prior
If we obtain an accurate estimate of the propensity scores, the
convergence of the estimated class prior to the true class prior
follows from the following theorem:

Theorem 2. Assume that there exists a sequence em(x) of
functions which converges to the propensity score e(x) for all
x ∈ X . Then, given the sequence of class priors

µm(y = 1) := Ex

[
s+ (1− s)y

∧
(1− em(x))

1− y
∧
em(x)

]
,

the following result holds

µm(y = 1) −→ µ(y = 1) for m→∞.

Proof. The hypothesis means that

lim
m→∞

em(x) = e(x) ∀x ∈ X.

Then,

lim
m→∞

µm(y = 1) = lim
m→∞

Ex

[
s+ (1− s)y

∧
(1− em(x))

1− y
∧
em(x)

]
= Ex lim

m→∞

[
s+ (1− s)y

∧
(1− em(x))

1− y
∧
em(x)

]
= Ex

[
s+ (1− s) limm→∞ y

∧
(1− em(x))

limm→∞ 1− y
∧
em(x)

]
= Ex

[
s+ (1− s)y

∧
(1− e(x))

1− y
∧
e(x)

]
= µ(y = 1),

where the first step is due to the dominated convergence the-
orem (the sequence of functions is bounded because of prob-
abilities) and the second equality holds since both the factors
are non zero and their limit exists for any x.

4 Active PU Learning
The active learning strategy asks the user to label those ex-
amples that are the most informative, according to some cri-
terion, for learning the classifier. While it is perfectly possible
that strategy will query the labels for examples belonging to
both classes, as discussed in the Introduction situations will
arise where a user will only label positive examples. We look
at both an ideal and a realistic case. In the ideal case, we as-
sume that the user is a perfect oracle (subsection 4.1). The
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queried examples are labeled only if their real class is posi-
tive, and in all other cases, the user does not know the true
label and the queried examples remain unlabeled. In the re-
alistic case, we assume that the user is an imperfect oracle
(subsection 4.2). The user is not always able to recognize the
examples, so that with a certain probability the queried ex-
ample might not be labeled. In addition, there is a low prob-
ability that the user might label a queried example as positive
while its true label is negative.

Next, we describe CAPE (Class prior estimation in Active
Pu lEarning) which is our practical approach for estimating
the class prior from data. Its estimate depends on whether
the user is a perfect or imperfect oracle which changes how
em(x) is estimated. In the ideal case, the probability to label
an example only depends on its true label. In the realistic
case, it also depends on a probability measure that represents
the user’s uncertainty about its true label.

4.1 Propensity Scores under Perfect Oracles
The direct computation of em(x) breaks down into three
parts. First, we compute the probability that x is labeled in
a given subset with cardinality m. Second, we multiply this
probability with the count of how many times x is part of a
subset of size m sampled from the dataset XD. Third, we
compute the expected probability of sampling these subsets.

Label probability. In the ideal case, the user is a perfect
oracle. If a truly positive example is selected to be labeled, the
user always labels it correctly.2 Therefore, given a subset X
of the dataset XD, an example in this subset is labeled if it is
in the top-k most informative examples ofX (denoted asXk)
according to the active learning strategy because those are the
examples that will be queried. If we use the active learning
strategy to construct a global ranking of all the examples in
XD where the higher ranked examples are queried first, we
can reasonably assume that this ranking is preserved for the
examples in any subset of XD. Let xj+1 be j+ 1-th example
in the global ranking (G.R.). The probability that xj+1 is
queried is equal to the probability that it is in the top-k of a
sampled subset X:

P(xj+1 ∈ Xk) =


1 if xj+1 ∈ top-k of G.R.
k−1∑

t=max{0,m+j−N}

(
j
t

)
·
(
n−j−1
m−t−1

)(
n−1
m−1

) otherwise.

(3)
where t is the number of examples ranked higher in the global
ranking than xj+1 in any given subset X of XD.

Counting the subsets. The number of times xj+1 will be
chosen among n elements by simultaneously selecting m ex-
amples is:

|{X ⊆ XD : xj+1 ∈ X, |X| = m}| =
(
n− 1

m− 1

)
. (4)

Expected probability of sampling the subsets. Assuming
that the samples are drawn independently, the mean measure

2If a truly negative example is selected, no label is given.

of a sample of m elements drawn from the population with
distribution µX is:

EX

[
dµ
∧

X(X)
]

= EX

[
m∏
i=1

dµ
∧

X(xi)

]
=

m∏
i=1

EX

[
dµ
∧

X(xi)
]
, (5)

where µ
∧
X is estimated using a kernel density estimator. Note,

we can only draw samples consisting of examples in XD. Fi-
nally, the em(x) for any example x is derived as:

P(xj+1 ∈ Xk)×
(
n− 1

m− 1

)
×

m∏
i=1

EX

[
dµ
∧

X(xi)
]
.

4.2 Propensity Scores under Imperfect Oracles
In the real world, the user is an imperfect oracle. If a truly
positive example is selected to be labeled, she may be unsure
of its label and decide not to label it. If a truly negative ex-
ample is selected to be labeled, there is a small probability
she labels it incorrectly as a positive. This requires changing
the label probability to include the probability that the user is
able to label the example:3

µ(s = 1|x,X) = µ(q = 1|x,X)µ(s = 1|x,X, q = 1),

where q is the binary variable that is 1 if x is queried and 0
otherwise. Note that the previous identity is obtained because
the probability to label an example not queried is 0.
Query probability. The probability to query an example
depends on whether or not the example is in the top-k of a
subset X according to the active learning strategy:

µ(q = 1|x,X) = µ(q = 1|X,x ∈ Xk) · µ(x ∈ Xk|X)

+ µ(q = 1|X,x /∈ Xk) · µ(x /∈ Xk|X) =

= µ(x ∈ Xk|X) + µ(q = 1|X,x /∈ Xk) · µ(x /∈ Xk|X).

First, if an example is in the top-k of X , it is always queried.
Second, if an example is not in the top-k, whether it is queried
now depends on the user’s uncertainty about the labels of the
higher ranked examples in X . Let xj+1 be j + 1-th example
in the general ranking. To compute the probability that xj+1

is queried, we first simplify the problem by approximating
the user’s uncertainty about any example x with the mean of
the user’s uncertainty over all the examples in the observed
dataset XD. Then, the probability can be computed as:

µ(q = 1|X,xj+1 /∈ Xk) =

min{j,m−1}∑
t=max{k,m−n+j}

(
j

t

)(
n− j − 1

m− t− 1

) t∑
s=t−k+1

(1− p)sp t−s−1

(6)

where t is the number of examples ranked higher than xj+1 in
a given subsetX , s is the number of examples out of t that the
user cannot label, and p̄ is the user’s uncertainty for any ex-
ample. Intuitively, Equation 6 considers all possible scenarios
where the user fails to label enough examples such that xj+1

is queried and sum the probabilities of these scenarios.
3For brevity, we omit |y = 1 everywhere in this section, even

though all the events in the equations are conditioned on y = 1.
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Label probability under user’s uncertainty. Finally, the
label probability of an example x in position j + 1 is:

µ(s = 1|x,X) = µ(s = 1|x,X, q = 1) · µ(q = 1|x,X) =

= µ(s = 1|x,X, q = 1) · [µ(x ∈ Xk|X)+

+ µ(q = 1|X,x /∈ Xk) · µ(x /∈ Xk|X)],
(7)

where µ(s = 1|x,X, q = 1) is the user uncertainty of that
example, µ(x ∈ Xk|X) is as in 3, µ(q = 1|X,x /∈ Xk) is
as in 6 and µ(x /∈ Xk|X) is 1 − µ(x ∈ Xk|X). The final
propensity score for an example x under user uncertainty is
the product between the factors in Equations 4, 5, and 7.

5 Experiments
We empirically evaluate the effectiveness of CAPE to recover
the true class prior in the context of anomaly detection be-
cause it matches our setting: a handful of normal (positive)
labels are acquired through an active learning strategy, the re-
maining examples are unlabeled. Furthermore, most anomaly
detection algorithms require an estimate of the class prior
to make binary predictions (an example is normal or abnor-
mal).4 We address the following empirical questions:

1. Can CAPE accurately estimate the true class prior?
2. How does user uncertainty affect the CAPE’s ability to

estimate the class prior?
3. Does a more accurate estimate of the class prior improve

the performance of an anomaly detector?

5.1 Experimental Setup
Methods. We compare: our proposed method CAPE5,
TICE which estimates the class prior using decision tree in-
duction [Bekker and Davis, 2018], and KM1 and KM2 which
compute the class prior by modeling the distribution of the
positive examples [Ramaswamy et al., 2016].
Data. The benchmark consists of 9 standard anomaly de-
tection datasets from [Campos et al., 2016].6 The datasets
are listed in Table 1. They contain more normals than anoma-
lies with normal class priors varying between 0.64 and 0.99.
Setup. In all experiments, SSDO with its default parame-
ters is used as the semi-supervised anomaly detector [Ver-
cruyssen et al., 2018].7 SSDO learns a classifier from un-
labeled and normal examples. We use ISOLATION FOR-
EST [Liu et al., 2008] as its unsupervised prior. Using the
method from [Kriegel et al., 2011], the anomaly scores are
mapped to probabilities. We use uncertainty sampling as ac-
tive learning strategy [Settles, 2012]. We model the user’s
uncertainty using the the kernel density estimate as imple-
mented in SCIKIT-LEARN. For each dataset and compared
method, the following procedure is repeated five times. First,
the dataset is split into training and test sets using a stratified

4The anomaly detection algorithms implemented in SCIKIT-
LEARN or PYOD require the contamination factor (1− class prior)
to be able to make binary predictions.

5Code: https://github.com/Lorenzo-Perini/Active PU Learning
6Data: www.dbs.ifi.lmu.de/research/outlier-evaluation
7Code: https://github.com/Vincent-Vercruyssen/anomatools

Dataset # Examples (s) # Vars P(y = 1)

WBC 454 9 0.9780
Shuttle 507 9 0.9862
WDBC 367 30 0.9728
Stamps 340 9 0.9088
Ionosphere 351 32 0.6410
Cardiotocography 434 21 0.9493
PageBlocks 421 10 0.8979
Pima 625 8 0.8000
Annthyroid 713 21 0.9257

Table 1: Benchmark anomaly detection datasets.
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Figure 1: MAE of class prior estimates as a function of the number
of labels, under no user uncertainty. Lower numbers are better.

5-fold split. All training data are initially unlabeled. Then it-
eratively, the user is queried until k = 5 new labels are added
to the training set in accordance with the active learning strat-
egy and the probability of labeling the example correctly is
equal to the user’s uncertainty. After adding new labels to the
training data, the class prior is estimated on the training data,
the SSDO classifier is retrained, and its performance on the
test set is measured (using the estimated class prior to obtain
binary predictions for the test data). The process stops when
150 examples are labeled. We report the results averaged over
all five runs.
Hyperparameters. The parameters of TICE, KM1, and
KM2 are set to the values recommended in the original pa-
pers. CAPE has only one hyperparameter: the range of car-
dinalities m in the outer loop, which is minimally 1 and max-
imally n (the cardinality of the dataset). In the experiments,
we set the range to n ·{0.02, 0.04, 0.06, . . . , 0.4, 0.5, . . . 0.9}.

5.2 Results
Q1: Recovering the class prior. Figure 1 shows the mean
absolute error (MAE) of the estimated class prior as a function
of the number of labeled training examples with no user un-
certainty. On seven of the nine datasets, CAPE outperforms
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Figure 2: MAE of class prior estimates as a function of the number
of labels, assuming the user’s uncertainty. Lower numbers are better.

the three baselines. On these datasets our estimate converges
to the correct one, often with < 100 labels. On two datasets,
TICE results in (slightly) better performance than CAPE. In
these two datasets, our approach tends to overestimate the
class prior, likely due to inaccuracies in the underlying SSDO
model (i.e., anomalous examples have a high predicted prob-
ability of being normal). In addition, as more examples are
labeled, CAPE’s estimate of the class prior converges to the
true class prior smoothly. In contrast, acquiring a small num-
ber of labels (e.g., 5) may cause its competitors’ estimates of
the class prior to change dramatically.

Q2: impact of user uncertainty. We repeat the previous
experiment in the more realistic setting where the user is un-
certain and makes mistakes in the labeling. Figure 2 shows
how the mean absolute error (MAE) of the estimated class
prior varies as a function of the number of labeled instances
for each method. Again, CAPE results in the most accurate
estimates on seven of the nine datasets. Again, its estimates
fluctuate less than its competitors.

Q3: class prior impact on anomaly detection. Most
anomaly detectors require knowing the proportion of anoma-
lies in the dataset either for training the detector itself or for
thresholding the detector’s numeric outlier scores in order to
be able to make a decision in practice. In this experiment,
we consider the second scenario and use the estimated class
prior to convert SSDO’s numeric output into a decision rule.
Figure 3 shows the F1 score for SSDO’s model when using
the class prior estimated by each method to set the decision
threshold. Here, the results are more mixed as CAPE yields
equivalent or more accurate estimates on a small majority of
the cases. Note that the black dashed line represents perfor-
mance when using the true class prior: using the true and
estimated priors result in similar predictive performance.
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Figure 3: The F1 score when using each approach’s estimated class
prior to threshold SSDO’s numeric output into a decision rule.

6 Related Work
Several papers have studied the combined setting of PU learn-
ing and active learning. However, while we focus on es-
timating the class prior, these papers have a different fo-
cus. [Ghasemi et al., 2016] designed an uncertainty sampling
active learning strategy specifically tailored to PU datasets.
[Barnabé-Lortie et al., 2015] developed an active learning
strategy for one-class classification by querying the examples
which match the learned class the least. There are a num-
ber of different ways to apply active learning strategies when
dealing with one-class classification problems [Trittenbach et
al., 2018; Trittenbach et al., 2019]. Finally, [He et al., 2015]
applied active learning to PU time series data by querying the
examples with both high uncertainty and high utility.

7 Conclusion
We proposed a CAPE, a method that estimates the class
prior in a PU setting where the positive labels were acquired
through active learning. CAPE derives the class prior by first
estimating each unlabeled example’s propensity score, which
is the probability that the active learning approach will query
the example’s label. Theoretically, we proved that our esti-
mate of the class prior will converge to its true value if we ob-
tain accurate propensity scores. Practically, we showed how
to estimate the propensity scores in two settings. In the first,
the user never makes mistakes and only labels positive exam-
ples whereas the second considers modeling the user’s uncer-
tainty. Empirically, we demonstrated that CAPE recovers the
class prior more accurately than existing approaches.
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