
Learning from Positive and Unlabeled Multi-Instance Bags in
Anomaly Detection

Lorenzo Perini

lorenzo.perini@kuleuven.be

KU Leuven, Dept. of Computer

Science; Leuven.AI,

B-3000 Leuven, Belgium

Vincent Vercruyssen

vincent.vercruyssen@kuleuven.be

KU Leuven, Dept. of Computer

Science; Leuven.AI,

B-3000 Leuven, Belgium

Jesse Davis

jesse.davis@kuleuven.be

KU Leuven, Dept. of Computer

Science; Leuven.AI,

B-3000 Leuven, Belgium

ABSTRACT

In the multi-instance learning (MIL) setting instances are grouped

together into bags. Labels are provided only for the bags and not

on the level of individual instances. A positive bag label means that

at least one instance inside the bag is positive, while a negative bag

label restricts all the instances in the bag to be negative. MIL data

naturally arises in many contexts, such as anomaly detection, where

labels are rare and costly, and one often ends up annotating the

label for sets of instances. Moreover, in many real-world anomaly

detection problems, only positive labels are collected because they

usually represent critical events. Such a setting, where only positive

labels are provided along with unlabeled data, is called Positive and

Unlabeled (PU) learning. Despite being useful for several use cases,

there is no work dedicated to learning from positive and unlabeled

data in a multi-instance setting for anomaly detection. Therefore,

we propose the first method that learns from PU bags in anom-

aly detection. Our method uses an autoencoder as an underlying

anomaly detector. We alter the autoencoder’s objective function

and propose a new loss that allows it to learn from positive and

unlabeled bags of instances. We theoretically analyze this method.

Experimentally, we evaluate our method on 30 datasets and show

that it performs better than multiple baselines adapted to work in

our setting.

CCS CONCEPTS

• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks → Network reliability.
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1 INTRODUCTION

Multi-instance learning (MIL) [10, 24, 48] is a form of weakly su-

pervised learning where the learner has access to sets of instances,

called bags. Most importantly, labels are provided on the bag level

and not for each individual instance. In MIL for binary classification,

a positive bag contains at least one instance that belongs to the

positive class, but it is not knownwhich ones are responsible for the

bag label. In contrast, a negative bag only contains instances that

belong to the negative class. Multi-instance data naturally arises

in many applications like drug activity prediction [10], video [29],

document [49], and sound [5] classification.

MIL data also naturally arises in anomaly detection [7, 16] where

the task is to detect unexpected instances [13, 33, 34]. Two illus-

trative examples are monitoring resource usage in a retail store

to avoid water leaks [40] and collecting sensor data from wind

turbines to detect blade icing [46]. In both cases, experts tend to

provide coarse-grained labels by flagging an anomaly on the level of

a day (or longer), while the data is collected on a more fine-grained

level. However, the anomalous behavior is not necessarily present

for the majority of the flagged time period. Moreover, experts need

the anomaly detection system not only to flag anomalous behaviors

on a daily level but rather at the exact time the anomalous behavior

occurs, as it is practically relevant for decision-making (e.g., a spike

in water usage at night requires different response than one during

opening hours of the store). As a result, constructing instances at a

coarse granularity by defining features over the full window has

two evident risks: (i) making the instance seem more normal than

it is when aggregating over both normal and abnormal behaviors;

(ii) losing the connection between the observed behavior and the

time it occurred. This requires posing the problem as a MIL task.

Most anomaly detection scenarios are naturally characterized

by small amounts of labeled data and lots of unlabeled data [26, 39]

because anomalies are rare and hard to acquire. Moreover, one

ends up only annotating positive (i.e., anomalous) bags because

anomalies are usually connected to critical events. Unfortunately, it

is not safe to assume that all unlabeled instances are non-anomalous

because some failures may not be detected by the experts. Hence,

we are dealing with a PU problem [4, 12], which is a special case of

binary classificationwhere the learner has only access to positive (P)

labels and unlabeled (U) data. Alas, there is no research on anomaly

detection methods that handle both the MIL and PU settings.

In this paper, we try to fill this gap by investigating the combi-

nation of MIL and PU learning for anomaly detection and propose

a novel algorithm called PUMA (Positive and Unlabeled Multi-

instance Anomaly detector) for this setting. Our approach adopts

the standard PU learning assumption that the observed positive
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labels are “Selected Completely At Random” (SCAR) [4, 12] on

the bag level for MIL. This assumption means that we have the

same constant probability of observing every positive bag label.

Additionally, it assumes that there are fewer positive instances (i.e.,

anomalies) than negative instances, which is standard in anomaly

detection. PUMA uses an autoencoder as the base anomaly detector.

We design a new loss function for training the autoencoder that

extends the typical unlabeled objective of minimizing the recon-

struction error with a second labeled component that exploits the

bag labels. Conceptually, this loss uses the unlabeled bags to force

the model to learn what constitutes the normal instance behav-

ior and the positive bag labels to force it to learn to discriminate

between anomalous and normal behaviors.

Overall, we make four contributions. First, we introduce the

problem of learning from PU bags in anomaly detection, which

has several use cases. Second, we develop PUMA that can learn

a model capable of assigning both instance and bag labels. Third,

we theoretically analyze PUMA’s ability to learn from large bags.

Finally, we experimentally evaluate PUMA on 9 real-world datasets,

divided into two use cases, and 21 benchmark datasets.

2 PRELIMINARIES AND RELATEDWORK

Multi-Instance Learning. Multi-instance learning (MIL) [10,

24, 48] refers to the setting where a learner has access to instances

but labels are given only on a bag level, where a bag is a set of

instances. Let 𝑋 = {𝑥1, . . . , 𝑥𝑁 } be a dataset with 𝑁 instances such

that 𝑥𝑖 ∈ R𝑑 for 𝑖 ≤ 𝑁 . Formally, we assume that the instances

are provided within 𝑀 bags 𝐵 = {𝑥1, . . . , 𝑥𝑘 }, where 𝑘 is the bag

size such that 𝑘 ×𝑀 = 𝑁 . We indicate by 𝑌𝐵 the label of the bag 𝐵,

and by 𝑦𝑥 the label for the instance 𝑥 . A positive bag label 𝑌𝐵 = 1

indicates that at least one instance in the bag is positive (i.e., there

exists 𝑖 ≤ 𝑘 such that 𝑦𝑥𝑖 = 1), while a negative bag label 𝑌𝐵 = 0

means that all the instances are negative (i.e., for all 𝑖 ≤ 𝑘 we have

𝑦𝑥𝑖 = 0). When applied to anomaly detection, the task of MIL is

to assign labels either to the bags [19], or to the instances [23] by

introducing a probability function [17, 18, 34]. In contrast, we build

an anomaly detector that performs both: we develop a bag and an

instance probability function to assign labels to instances and bags.

Positive and Unlabeled Learning. In Positive and Unlabeled

(PU) learning [4] the model only has access to positive labeled

instances and unlabeled instances. In this setting, we assume that

only positive bag labels are provided along with unlabeled bags.

This means that 𝑌𝐵 = 1 for 𝐵 ∈ 𝑃 , while 𝑌𝐵 is unknown for 𝐵 ∈ 𝑈 ,

where 𝑃 and 𝑈 are, respectively, the set of labeled and unlabeled

bags. Because we assume that labels are SCAR, each (positive) bag

has constant probability 𝑐 (i.e., the label frequency) to be labeled.

Unfortunately, there is only limited literature about MIL with PU

bags [2, 11, 38, 42]. Other literature focuses on semi-supervised

MIL [14, 41, 43, 47], where, commonly, models are based on a loss

function that separately learns from labeled and unlabeled bags.

Anomaly detection. Anomaly detection algorithms assign a

score to each instance in a dataset representing its degree of anoma-

lousness [25, 28]. This paper uses an autoencoder [1] as anomaly

detector. An autoencoder (AE) is a neural network composed of an

encoder that maps the input instance 𝑥 into a lower-dimensional

hidden space, and a decoder that maps it back to the original space.

The goal is to find a lower dimensional representation that still

enables accurate reconstruction of the input. In anomaly detection,

a common way to assign anomaly scores through an AE is to use

its reconstruction error: 𝑎𝜃 (𝑥) = ∥𝑥 − ae𝜃 (𝑥)∥2, where ∥ · ∥ is the
Euclidean norm, ae𝜃 (𝑥) is the reconstructed input by the autoen-

coder with 𝜃 as parameters (i.e., the network weights). Because the

AE is trained to minimize 𝑎𝜃 (𝑥) on the training set, the higher the

reconstruction error for a test instance, the more anomalous it is. In

this work, we refer to the anomaly class as the positive one. Similarly

to our work, Iwata et al. [19] introduce the inexact AUC and use

the autoencoder to learn from bag labels. However, they assume

a fully labeled setting and that positive bags contain exactly one

anomaly.

3 A PU MULTI-INSTANCE ANOMALY

DETECTION FRAMEWORK

This paper tackles the following problem:

Given: a set 𝑃 of positive (anomalous) labeled bags such that

𝑌𝐵 = 1 if 𝐵 ∈ 𝑃 , a set 𝑈 of unlabeled bags such that 𝑌𝐵 is

unknown for 𝐵 ∈ 𝑈 ;

Do: find a bag probability function 𝐹 and an instance proba-

bility function 𝑓 that assign, respectively, bag and instance

probabilities of being anomalous.

Learning from PU bags in anomaly detection has four challenges.

First, semi-supervised anomaly detectors assume that labels are

associated with the instances, while we are provided with (only

positive) labels on a bag level. Propagating such labels to an in-

stance level is challenging. Second, we lack negatively labeled bags

which may affect the model’s training as it is naturally inclined to

overfit toward the positive class, if not properly corrected. Third,

some anomalies may not follow specific patterns. Thus, anomalous

instances in the positively labeled bags may not be fully represen-

tative of the positive instance class. Fourth, real-world applications

need predictions both on a bag (𝐹 ) and on an instance (𝑓 ) level.

However, most of the existing methods focus only on few distin-

guishable positive instances that trigger the bag label (e.g., using

the max of a scoring function) and treat all the remaining instances

as negative [23, 36]. This erodes the performance on the instance

level, as bags can contain multiple positive instances.

In this paper, we introduce PUMA (Positive and UnlabeledMulti-

instance Anomaly detector), a novel loss-based approach that learns

from positive and unlabeled bags in an anomaly detection setting

and assigns positive (anomalous) class probabilities on both an

instance and a bag level. Specifically, PUMA trains an Autoencoder

with a two-component loss function 𝐿 = 𝐿𝑢 + 𝐿𝑝 . Through the first

component (𝐿𝑢 ), it uses the unlabeled bags to model the distribution

of the seen examples in order to detect anomalies that do not follow

any patterns (e.g., novelties) at the test time (Section 3.1). Through

the second component (𝐿𝑝 ), it exploits the positive bag labels to

learn to discriminate between positives and negatives (Section 3.2).

Finally, 𝐿 can be minimized using the common back-propagation

technique (Section 3.3).
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3.1 The unlabeled loss component 𝐿𝑢
Because anomaly detection problems usually have few (or no)

labels, anomaly detectors need to leverage a large amount of unla-

beled data. For this task, we select the autoencoder for two reasons.

First, it is accurate at detecting novel examples [9], which makes

the model able to capture anomalies that do not follow any pattern.

Second, it is robust to slightly contaminated data (i.e., the training

set contains unlabeled anomalies), particularly when its structure

is limited to few layers and neurons [35].

Because the input is a set of bags, we derive the bag-wise re-

construction error R𝜃 (𝐵) = 1

𝑘

∑𝑘
𝑗=1 𝑎𝜃 (𝑥 𝑗 ) for an unlabeled bag

𝐵 = {𝑥1, . . . , 𝑥𝑘 } as the average of the instance reconstruction error

𝑎𝜃 (𝑥 𝑗 ) (for 𝑗 ≤ 𝑘). The unlabeled component 𝐿𝑢 is computed as

the average over all the unlabeled bags:

𝐿𝑢 B
1

|𝑈 |
∑︁
𝐵∈𝑈

R𝜃 (𝐵) =
1

𝑘 |𝑈 |
∑︁
𝐵∈𝑈

∑︁
𝑥 𝑗 ∈𝐵

𝑎𝜃 (𝑥 𝑗 ). (1)

Varying the autoencoder’s parameters 𝜃 has an impact on both 𝑓

(instance function) and 𝐹 (bag function), as shown in Sec. 3.2.

3.2 The labeled loss component 𝐿𝑝
Building a loss function that uses positive bag labels requires set-

ting up a learning scheme where: (1) we parametrize the instance

probability function 𝑓 , (2) we link it to the bag probability func-

tion 𝐹 , (3) we collect negative bag labels, and (4) we use the bag

labels to measure how accurate 𝐹 is. Each of these steps has hidden

challenges that we tackle as follows.

1. Mapping instance scores to probabilities. Because the Au-

toencoder’s instance anomaly scores are in [0, +∞), there is no

guarantee of comparable scaling across different bags [27]. Thus,

we transform the instance reconstruction errors 𝑎𝜃 (𝑥) into cali-

brated probabilities by applying Platt scaling [15, 30]:

𝑓 (𝑥) = P(𝑦𝑥 = 1)
∧

=
1

1 + exp(−𝛼𝑎𝜃 (𝑥) − 𝛽) (2)

where 𝑓 depends on the autoencoder’s parameters 𝜃 , and on the

two new calibration parameters 𝛼 , 𝛽 ∈ R. Note that the principle
itself is not restricted to this particular choice of 𝑓 , but one could

apply any transformation to [0, 1]. We choose Platt scaling because

it is widely used in the literature.

2. Transforming instance probabilities into bag probabil-

ities. Computing the bag probability by taking the max instance

probability means that the model is only updated based on the sin-

gle instance that triggers the bag label [19, 23], and hence ignores

the information present in the other examples. On the other hand,

taking an unweighted average of the instance probabilities would

make a bag that contains a small number of anomalies seem more

normal than it is. One solution would be to use the Noisy-OR ap-

proach [24], which computes the bag probability of being positive

as “one minus the probability that all the instances are negatives”.

However, we show in Section 4 that the Noisy-OR is ill-conditioned

when the bag size 𝑘 is large. Therefore, we propose a weighted

Noisy-OR approach, instead. Our key insight is that the instances
with the highest and lowest positive probabilities should have higher

weights because they contribute more to defining the bag label:

𝐹 (𝐵) = P(𝑌𝐵 = 1)
∧

= 1 −
∏
𝑥 𝑗 ∈𝐵

(
1 − 𝑓 (𝑥 𝑗 )

)𝑤𝑗 , (3)

where 𝐹 depends on 𝜃, 𝛼 and 𝛽 through 𝑓 , and𝑤 𝑗 is the weight for

𝑥 𝑗 . Note that if we used 1 − 𝑓 (𝑥 𝑗 )𝑤𝑗
instead of (1 − 𝑓 (𝑥 𝑗 ))𝑤𝑗

, we

would modify the instance probabilities 𝑓 (𝑥 𝑗 ) and aggregate them

with equal weight, which is not consistent with our insight.

The choice of the weights should reflect that a bag probability

𝐹 (𝐵) is mainly decided by the highest and lowest instance probabil-

ities 𝑓 (𝑥 𝑗 ) in the bag. Thus, we (1) rank the instances in each bag

according to their probabilities to define the local “highest/lowest”

probabilities, (2) assign a score to each rank that measures the in-

stance contribution for the bag label, and (3) transform such score

into a proper weight𝑤 𝑗 for Eq. 3. Éach step works as follows:

First, we rank the positive instance probabilities in ascending order

using a ranking map 𝜌 𝑓 : R
𝑘 → {0, . . . , 𝑘 − 1}, which assigns the

instance 𝑥 𝑗 to its rank 𝑟

𝜌 𝑓 (𝑥 𝑗 )=𝑟 ∈ {0, . . . , 𝑘−1}⇐⇒
{
|{𝑥 ∈ {𝑥1, . . . , 𝑥𝑘 }: 𝑓 (𝑥)<𝑟 |=𝑟
|{𝑥 ∈ {𝑥1, . . . , 𝑥𝑘 }: 𝑓 (𝑥)>𝑟 |=𝑘−𝑟−1

Then, we normalize the rankings to [0, 1] by dividing them by 𝑘 − 1.

Second, we introduce a weighting function 𝑆 : [0, 1] → R that

gives high weights to both high and low rankings. Our reasoning is

that high-ranking instances should indicate how “positive” the bag

label is, while low-ranking instances (expected to be normal) should

indicate the opposite. For the sake of simplicity, we imagine such a

function to have two peaks (on 0 for low rankings and 1 for high

rankings) and be flat (almost null) in between. A natural choice of

𝑆 isN0 +N1 (restricted to [0, 1]), whereN𝑎 is the Gaussian density

function with mean 𝑎 and standard deviation 0.1:

𝑆

(
𝜌 𝑓 (𝑥 𝑗 )
𝑘 − 1

)
= N0

(
𝜌 𝑓 (𝑥 𝑗 )
𝑘 − 1

)
+ N1

(
𝜌 𝑓 (𝑥 𝑗 )
𝑘 − 1

)
.

Note that the principle itself is not restricted to this particular choice

of functional form for 𝑆 . One could apply a different map, but the

detailed theoretical results in Sec. 4 would naturally be different.

Third, we apply 𝑆 to each instance’s ranking in the bag and nor-

malize such values as

𝑤 𝑗 = 𝑆

(
𝜌 𝑓 (𝑥 𝑗 )
𝑘 − 1

) / ∑︁
𝑞≤𝑘

𝑆

(
𝜌 𝑓 (𝑥𝑞)
𝑘 − 1

)
.

We assign the weight𝑤 𝑗 to the instance 𝑥 𝑗 of each bag and use it to

derive the bag probability. Note that alternative methods like [21]

cannot be used in this setting because we exclude the possibility

that negative bags have positive instances.

3. Selecting the 𝑅 reliable negatives. Learning from only posi-

tive bag labels would allow the model to overfit towards the positive

class. Therefore, we propose to select |𝑅 | = |𝑃 | negative bags in
order to transform the problem into a classification task with bal-
anced classes. PUMA selects the |𝑅 | bags among 𝐵 with the lowest

positive probability 𝐹 (𝐵) as the reliable negatives. This requires
the assumption that the positive and negative classes are separable

to be true [3, 8], which is likely to be the case in anomaly detec-

tion because anomalies are usually well-separated from normal

examples. However, this selection rule may introduce bias because

the negative labels are not selected in an i.i.d. way. We attempt to
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limit the amount of bias by having the model re-select different

negatives 𝑅 in each iteration (i.e., epoch) of the training loop. In

this way, PUMA progressively refines its learned definition of the

negative class. In Section 5 we empirically analyze the value |𝑅 |
and show that setting it to |𝑃 | to keep the classes balanced yields

good results.

4. Learning 𝑓 and 𝐹 from PU bags. Evaluating the bag proba-

bility function 𝐹 requires comparing its output with the bag labels.

We use the log-likelihood of the positive and (self-generated) nega-

tive bag labels under the corresponding bag probabilities produced

by 𝐹 , and take its negative value as loss function 𝐿𝑝 . Formally, as-

suming that labels follow a Bernoulli distribution with parameter

𝐹 (𝐵), we build the loss function 𝐿𝑝 as

𝐿𝑝 = − log

(∏
𝐵∈𝑃

𝐹 (𝐵)
∏
𝐵∈𝑅

(1 − 𝐹 (𝐵))
)
+ 𝜆

(
𝛼2 + 𝛽2

)
(4)

where 𝜆(𝛼2 + 𝛽2) avoids overfitting. We set 𝜆 to 0.01.

We derive PUMA’s loss function as 𝐿 = 𝐿𝑢 + 𝐿𝑝 (Eq. 1 and 4) and

find the optimal parameters 𝜃, 𝛼, 𝛽 by minimizing 𝐿. This allows

the model to (a) learn the distribution of the normal instances and

(b) discriminate between positives and negatives.

Note that we do not scale the two components 𝐿𝑢 (weight as 1 bag)

and 𝐿𝑝 (weight as |𝑃 |+|𝑅 | bags) for two reasons. First, positive labels
are rare and we want to exploit them as much as possible. Second,

the more positive labels the more likely they are representative of

the whole positive class, and the less we need to detect novelties

(via the unlabeled component). This is reasonable as several use

cases have a limited number of different novelties that can occur.

3.3 Training with back-propagation.

Because back-propagation requires computing the gradient of 𝐿,

we show that 𝐿 is differentiable by proving that both 𝐿𝑢 and 𝐿𝑝 are

differentiable.

1)𝑳𝒖 . The unlabeled component 𝐿𝑢 (Eq. 1) depends only on the

Euclidean norm in 𝑎𝜃 (𝑥), which is differentiable on 𝜃 by definition.

2)𝑳𝒑 . In the label component, the penalization term is obviously

differentiable. The log-likelihood is differentiable if and only if

𝐹 = 𝐹𝜃,𝛼,𝛽 is. Note that 𝐹 (𝐵) = 1 − ∏
𝑗≤𝑘 (1 − (1 − 𝑓 (𝑥 𝑗 ))𝑤𝑗 ) de-

pends on the parameters 𝜃, 𝛼, 𝛽 through 𝑓 = 𝑓𝜃,𝛼,𝛽 and𝑤 𝑗 . Because

𝑓 is a sigmoid function on top of the reconstruction error, it is

differentiable. In addition, 𝑓 cannot take the extreme values 0 and 1

because it is a sigmoid function, which means that (1 − 𝑓 (𝑥))𝑆 (𝑥 )
is differentiable for any 𝑥 if and only if the function 𝑆 is. Since Platt

scaling is Lipschitz-continuous, we reasonably assume that small

variations in the parameters lead to small variations in the instance

probabilities 𝑓 but do not change the instance ranking. Therefore,

𝑆 is differentiable with null gradients. Note that this does not imply

that the whole gradient is null because multiple terms appear due

to the chain rule of derivation.

4 THEORETICAL ANALYSIS

The standard noisy-OR approach is widely used in the MIL liter-

ature [24, 44]. In this section we answer the question: why is the
weighted noisy-OR necessary for learning, as opposed to the standard
noisy-OR? We do so in two steps. First, we illustrate the noisy-OR’s

drawback that does not allow PUMA to learn for large bag sizes.

Second, we show that the weighted noisy-OR does not present the

same issue.

1. Standard noisy-OR drawback. Given a bag 𝐵, the standard

noisy-OR derives the probability that 𝐵 is positive as “one minus

the probability that all the instances are negatives”

(Noisy-OR) P(𝑌𝐵 = 1)
∧

= 1 −
∏
𝑗≤𝑘

(1 − 𝑓 (𝑥 𝑗 )) .

However, for large values of 𝑘 , this probability converges to 1

regardless of the instance probabilities 𝑓 (𝑥 𝑗 ):

Theorem 4.1. Given an instance probability function 𝑓 : X𝐼 →
(0, 1) and a bag 𝐵 = {𝑥1, . . . , 𝑥𝑘 }, the standard noisy-OR approach
produces bag probabilities of being positive that converge exponen-
tially to 1 for 𝑘 → +∞.

Proof. Because 𝑓 maps instances to (0, 1), the standard noisy-

OR approach assigns bag probabilities always strictly lower than

1 and greater than 0, i.e., 0 < 𝑓 (𝑥 𝑗 ) = P(𝑦𝑥 = 1)
∧

< 1. Assume

without loss of generality, that 𝑓 (𝑥 𝑗 ) are i.i.d. random variables

distributed in [0, 1] such that 0 and 1 are events with 0 probability.

Therefore, 0 < E[𝑓 (𝑥 𝑗 )] < 1. Thus, increasing the bag size 𝑘 (i.e.,

for 𝑘 → +∞) the expected bag probability E[P(𝑌𝐵 = 1)
∧

] is equal to

E

1 −
∏
𝑗≤𝑘

(1− 𝑓 (𝑥 𝑗 ))
 =1−

∏
𝑗≤𝑘
E

[
(1 − 𝑓 (𝑥 𝑗 ))

]
=1−

(
1−E

[
𝑓 (𝑥 𝑗 )

] )𝑘
and always goes exponentially to 1, as the product of values strictly

lower than 1 decreases monotonically with respect to 𝑘 . □

As a result, in our setting the standard noisy-OR would constantly

output bag probabilities equal to 1 for large values of 𝑘 . For example,

if the instance probabilities were distributed uniformly in [0, 1],
then the expected bag probability would be 1 − 1

2
𝑘 . With 𝑘 = 30,

it would be 1 − 1 × 10
−10

, which is likely to be dominated by

computational machine errors. In contrast, the weighted noisy-OR

does not present the same problem.

2. The weighted noisy-OR converges to (0, 1). Because the

highest and lowest instance probabilities have the largest effect on

estimated bag probability, the weighted noisy-OR is not affected by

large values of 𝑘 . We first provide an intermediate result:

Theorem 4.2. Given a bag 𝐵 = {𝑥1, . . . , 𝑥𝑘 }, the weights normal-

ization constant can be approximated as
∑

𝑗≤𝑘 𝑤 𝑗 ≈ 2𝑘Φ0

(
1

2𝑘

)
for

large values of 𝑘 , where Φ0 is the cumulative of N0.

Proof. Given 𝑘 instances, the normalized ranking of their prob-

abilities is an equally spaced grid of [0, 1] (extremes included) with

gap equal to
1

𝑘
. Thus, summing all the weights 𝑤𝑞 for 𝑞 ≤ 𝑘 and

multiplying them by
1

𝑘
is a fair approximation of the area below

the densityN0 (𝑡) +N1 (𝑡) for 𝑡 ∈
[
− 1

2𝑘
, 1 + 1

2𝑘

]
. Note that we need

to slightly extend the [0, 1] interval when computing the area in

order to include the additional term due to the discretization of the

area. Indicating by Φ0 (𝑡) and Φ1 (𝑡) the cumulative distributions in
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𝑡 of, respectively, N0 and N1, it follows that

1

𝑘

∑︁
𝑗≤𝑘

𝑤 𝑗 ≈ Φ1

(
1 + 1

2𝑘

)
− Φ1

(
− 1

2𝑘

)
+ Φ0

(
1 + 1

2𝑘

)
− Φ0

(
− 1

2𝑘

)
= 2

[
Φ0

(
1 + 1

2𝑘

)
− Φ0

(
− 1

2𝑘

)]
= 2

[
0.5 + Φ0

(
1

2𝑘

)
− Φ0 (0)

]
= 2 · Φ0

(
1

2𝑘

)
=⇒

∑︁
𝑗≤𝑘

𝑤 𝑗 ≈ 2𝑘 · Φ0

(
1

2𝑘

)
,

where the equality on the first line comes from the symmetry of the

two normal random variables, while the second line steps depend

on the properties of the Gaussian random variables. □

Thanks to this result, we conclude that the weighted noisy-OR

converges to a value that can be neither 0 nor 1:

Theorem 4.3. For a bag 𝐵, the probability P(𝑌𝐵 = 1)
∧

converges
in (0, 1) for 𝑘 → +∞.

Proof. By using the Theorem 4.2 to approximate the weights,

P(𝑌𝐵 = 1)
∧

= 1 −
∏
𝑗≤𝑘

(
1 − 𝑓 (𝑥 𝑗 )

)𝑤𝑗 ≈ 1 −
∏
𝑗≤𝑘

(
1 − 𝑓 (𝑥 𝑗 )

) 𝑆

(
𝜌𝑓 (𝑥𝑗 ) )

𝑘−1

)
2𝑘 ·Φ

0 ( 1

2𝑘 )

= 1 − exp

©«
∑︁
𝑗≤𝑘

𝑆

(
𝜌𝑓 (𝑥 𝑗 )
𝑘−1

)
2𝑘 · Φ0

(
1

2𝑘

) · log(1 − 𝑓 (𝑥 𝑗 ))
ª®®¬

≈ 1 − exp

©«
∫

1

0

𝑆

(
𝜌𝑓 (𝑥 ) )
𝑘−1

)
2𝑘 · Φ0

(
1

2𝑘

) log(1 − 𝑓 (𝑥))𝑑 𝑓 (𝑥)
ª®®¬︸                                                          ︷︷                                                          ︸

𝑇

where we use the exponential of the logarithm formulation in the

second line, and we approximated the sum with the integral (third

line), for large values of𝑘 (hypothesis). The notation 𝜌 𝑓 (𝑥) indicates
the ranking of an instance probability 𝑓 (𝑥) that is moving along

the interval [0, 1]. Then, we prove two inequalities:

𝑇 < 1 − exp

©«−
𝑆 (1)

2𝑘 · Φ0

(
1

2𝑘

) ª®®¬ < 1 for large 𝑘,

𝑇 > 1 − exp

©«
𝑆 (0.5) · log(1)

2𝑘 · Φ0

(
1

2𝑘

) ª®®¬ > 0 for large 𝑘,

where in the first line we take the maximum rank value max𝑡 ∈[0,1]

𝑆

(
𝜌𝑓 (𝑡 )
𝑘−1

)
and solve the integral (equal to −1), while, in the sec-

ond line, we take the minimum values min𝑡 ∈[0,1] 𝑆
(
𝜌𝑓 (𝑡 )
𝑘−1

)
and

min𝑡 ∈[0,1] log(1 − 𝑡) and the integral gets constant equal to 1. This

proves that 0 < P(𝑌𝐵 = 1)
∧

< 1 for any bag 𝐵 for large values of 𝑘 .

Moreover, taking the limit on both sides it is straightforward that

P(𝑌𝐵 = 1)
∧

→ 𝑙 ∈ (0, 1) when 𝑘 → +∞. □

For example, if the probabilities 𝑓 (𝑥) were uniformly distributed

over the instances in the bag, the bag probability would converge

to 0.78. As a result, because the weighted noisy-OR returns non-

constant bag probability estimates, varying the model parameters

changes the bag probabilities, and, in turn, the gradient of the

loss 𝐿𝑝 cannot be null. This confirms that the model can use back-

propagation to learn, with no constraint on the bag size 𝑘 .

5 EXPERIMENTS

We address the following five experimental questions:

Q1. How does PUMA’s bag and instance level performance com-

pare to existing approaches?

Q2. How does PUMA’s performance vary upon changing the

number of true anomalies in a bag?

Q3. How does changing the number of reliable negatives |𝑅 |
impact PUMA’s performance?

Q4. How does increasing the number of instances per bag 𝑘

impact PUMA’s performance?

Q5. How robust is PUMA to the presence of anomalies in the

unlabeled data?

5.1 Experimental Setup

Methods. We compare PUMA
1
to eight baselines. The inexact

AE (iAE) is the state-of-the-art competitor for multi-instance anom-

aly detection [19]. Because iAE needs negative bag labels, we use

our own approach to select𝑅 reliable negatives for a fair comparison.

Note that iAE is able to leverage bag-level labels to learn, as it is a

natural MIL approach. puIF leverages the absence of negative labels

by calibrating the bag probabilities of an unsupervised IForest [22]

through a proper logistic regression technique for PU data [20]. For

completeness, we include cIF which uses the traditional logistic cal-

ibration [31] to calibrate IForest’s bag probabilities using positive

and reliable negative bag labels. Moreover, a random forest classi-

fier RF (naively) considers the unlabeled bags as negatives, and sets

the instance labels to be the same as their bag label, as traditionally

done in the literature [19]. Because none of the last three methods

naturally link bags to instance labels, we use our own weighted

noisy-OR for a fair comparison. Finally, we include four existing

baselines that only assign bag probabilities: PU-SKC [2] is based on

empirical risk minimization, PUmil [42] is an SVM-based approach,

LSDD [38] and DSDD [11] are density-based methods.

Data. Our experiments focus on how anomaly detection can

impact real-world sustainability. Specifically, we look at preventing

blade icing in wind turbines and preventing water loss in retail

stores. We complement these tasks, which naturally fit with this

paper’s setting, with additional experiments on benchmark datasets.

The first task aims at detecting anomalous ice formation on the

blades of two wind turbines (T15 and T21) [45].
2
The datasets

contain sensor measurements collected over the course of three

months. An instance is a 10-minute contiguous segment of the data,

while a bag includes 12 consecutive instances grouped together in a

2-hour long segment. This is a natural interpretation as predictions

are sensibly interpreted every 10 minutes, while the ground-truth

labels are reliably available at least every 2 hours.

1
Code available at https://github.com/Lorenzo-Perini/PU-MIL-AD.

2
The datasets can be downloaded from http://www.industrial-bigdata.com/Data
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Table 1: The number of instances, bags, instances per bag

𝑘 , variables, the proportion of positive instances 𝐼𝛾 , and of

positive bags 𝐵𝛾 for each considered dataset.

Dataset # Instances # Bags 𝑘 # Vars 𝐼𝛾 𝐵𝛾

Store1 12000 1000 12 11 0.037 0.245

Store2 12000 1000 12 11 0.048 0.341

Store3 12000 1000 12 11 0.031 0.218

Store4 12000 1000 12 11 0.076 0.359

Store5 12000 1000 12 11 0.124 0.294

Store6 12000 1000 12 11 0.018 0.153

Store7 12000 1000 12 11 0.113 0.500

Turbine15 4392 366 12 10 0.071 0.136

Turbine21 1956 163 12 10 0.052 0.098

Annthyroid 7120 712 10 21 0.075 0.300

KDDCup99 10000 1000 10 40 0.004 0.019

PageBlock 5340 534 10 10 0.081 0.300

SpamBase 2720 272 10 57 0.072 0.300

Waveform 3440 344 10 21 0.029 0.113

Cardio 1770 177 10 21 0.071 0.300

Cardiotoc. 1800 180 10 21 0.091 0.300

Internet 1740 174 10 1555 0.086 0.300

Landsat 5480 548 10 36 0.070 0.300

Letter 1570 157 10 32 0.050 0.229

Mammog. 7840 784 10 6 0.032 0.137

Musk 3060 306 10 166 0.031 0.133

Optdigits 5190 519 10 64 0.025 0.096

Pendigits 6870 687 10 16 0.022 0.097

Satellite 4750 475 10 36 0.075 0.300

Shuttle 10000 1000 10 9 0.070 0.300

Skin 7750 775 10 3 0.073 0.300

Pima 540 54 10 8 0.088 0.300

Thyroid 3650 365 10 6 0.025 0.106

Vowels 1450 145 10 12 0.031 0.131

Wilt 4810 481 10 5 0.053 0.212

The second task aims at detecting water leaks in 7 stores (S1,

. . . , S7) of a large retail company.
3
The datasets contain water con-

sumption measurements over the course of 3 years. An instance

corresponds to an hour-long contiguous segment of measurements.

This partition helps capture time-of-day effects and helps ensure

that features are aggregating over normal and anomalous behavior.

A bag corresponds to a full working day (8am-8pm) as the main-

tenance operators are typically flagging issues on a store level by

inspecting the data once per day.

Following Iwata et al. [19], we test the methods on 21 benchmark
datasets commonly used for anomaly detection.4 Since Iwata et al.
[19] unrealistically assume that positive bags contain a single anom-

aly, we consider a more general setting where positive bags can

contain multiple anomalies. We construct such bags using a hier-

archical approach: (i) we sample a bag label from a Bernoulli(0.3)

random variable; (ii) if it is positive, we fill the bag with random

3
These data are proprietary and shared with the researchers under an NDA.

4
Link: https://github.com/Minqi824/ADBench/tree/main/datasets/Classical

𝑛 ∈ {0, . . . , ⌈𝑘
2
⌉} true anomalies and with 𝑛 − 𝑘 normal instances

(𝑘 in total); (iii) if it is negative, we simply fill it with 𝑘 uniformly

drawn normal instances. This yields for each dataset a set of bags

as well as their ground-truth labels.

Table 1 shows the properties of the 30 anomaly detection datasets.

Although for the benchmark datasets the bag labels are sampled

using Bernoulli(0.3), some datasets have a proportion of positive

bag labels lower than 0.3 (e.g., KDDCup99, Waveform). This is

due to the limited number of anomalies available: once no more

anomalies can be added (without repetition) to the bags, we fill

in the remaining bags with only normal data. This creates fewer

positive bag labels but allows us to use even datasets with a low

proportion of anomalies.

Setup. For each combination of dataset and method, we run the

following experiment: (1) we use a stratified 5 fold cross-validation

to divide all the bags in the dataset into a train and test set, (2)

we simulate gradually increasing the label frequency 𝑐 , i.e., the

percentage of labeled positive bags, starting from 𝑐 = 5% and up

to 𝑐 = 50% (every 5%), (3) we train the method using the labeled

(and unlabeled) training bags, (4) we use the trained method to

predict the labels of both the test set instances and the test set bags,

and (5) we compute the area under the ROC curve (AUC) on the

instance- and bag-level. We compute the AUC because this is the

standard evaluation measure in anomaly detection research [6]. To

obtain robust results, we repeat each experiment 5 times and report

the averages and the standard deviations. The combination of 30

datasets with 5 fold cross-validation, 5 repetitions, and 10 label

frequencies yields a total of 30× 5× 5× 10 = 7500 experiments. We

run the experiments using one NVIDIA GeForce GTX 1080 Ti GPU.

Hyperparameters. PUMA and iAE use the same network archi-

tecture: two layers with 4 and 2 neurons each, learning rate= 0.005,

300 epochs, batch size= 64, and ReLU as activation function. We

set the regularization term 𝜆 to 0.01. RF, cIF and puIF
5
use their

default hyperparameters [37], and the Sklearn implementation of

Differential Evolution [32] as optimizer.

5.2 Experimental Results

Q1. How does PUMA compare to the baselines? We compare

PUMA to the baselines both on a bag and on an instance level.

Bag level. Figure 1 shows a fine-grained view of the results by

plotting the bag-level AUC as a function of the label frequency 𝑐 .

Overall, PUMA achieves higher/similar (i.e., difference ≤ 0.01) AUC

in around 72%, 77% and 83% of the experiments against, respectively,

PU-SKC, RF and iAE. Moreover, for each experiment, we rank the

methods from the best to the worst (lower is better) and report

the average ranks in Table 2. The results show that PUMA always

obtains the lowest (best) average rank when aggregating for each

label frequency over the datasets. In addition, PUMA ranks in the

top 2 positions on more than 75% of the experiments, while PU-SKC,

RF and iAE do so only on around 35% of the experiments.

Instance level. Table 3 reports the instance-level AUCs and ranks

averaged over all datasets (± std) for each method and for ten

values of 𝑐 . Overall, PUMA has the highest average AUC and lowest

average rank compared to the baselines regardless of the value of the

5
IForest’s code is available at https://pyod.readthedocs.io/en/latest/index.html
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Figure 1: Bag-wise AUC obtained by PUMA and the baselines on all the 30 datasets when varying the label frequency 𝑐 (x-axis).

Overall, PUMA performs better/similar to the baselines on the majority of datasets.

Bag ranks (avg. ± std.)

c% PUMA iAE RF cIF puIF PU-SKC puMIL LSDD DSDD

5 1.87 ± 1.43 3.23 ± 2.33 3.77 ± 1.59 8.13 ± 1.48 8.03 ± 1.00 3.98 ± 1.58 4.85 ± 1.81 5.68 ± 1.58 5.45 ± 1.94

10 2.07 ± 1.31 3.33 ± 2.17 3.40 ± 1.65 7.53 ± 1.11 8.40 ± 0.81 3.50 ± 1.86 4.97 ± 2.06 5.75 ± 1.60 6.05 ± 1.81

15 2.17 ± 1.37 3.63 ± 2.19 3.70 ± 1.56 7.40 ± 1.33 8.43 ± 0.73 3.48 ± 1.99 4.08 ± 2.03 5.88 ± 1.60 6.22 ± 1.97

20 2.27 ± 1.46 3.50 ± 2.19 3.13 ± 1.68 7.47 ± 1.36 8.30 ± 0.75 3.55 ± 1.63 4.45 ± 2.12 5.92 ± 1.57 6.42 ± 1.80

25 2.20 ± 1.27 3.57 ± 2.14 3.30 ± 1.51 7.43 ± 1.07 8.57 ± 0.63 3.32 ± 1.97 4.25 ± 2.04 5.92 ± 1.41 6.45 ± 1.57

30 1.90 ± 1.27 3.57 ± 2.08 3.13 ± 1.33 7.47 ± 1.38 8.40 ± 0.77 3.60 ± 2.15 4.43 ± 1.70 6.27 ± 1.22 6.23 ± 1.71

35 1.97 ± 1.33 3.60 ± 2.28 3.07 ± 1.39 7.30 ± 1.42 8.33 ± 0.76 3.72 ± 2.26 4.45 ± 1.56 6.20 ± 1.41 6.37 ± 1.68

40 2.03 ± 1.16 3.63 ± 2.25 2.90 ± 1.30 7.27 ± 1.17 8.43 ± 0.90 3.58 ± 2.19 4.55 ± 1.76 6.40 ± 1.28 6.20 ± 1.71

45 1.97 ± 1.38 3.63 ± 2.01 2.73 ± 1.36 7.33 ± 1.32 8.37 ± 0.85 3.58 ± 2.11 4.62 ± 1.55 6.35 ± 1.27 6.42 ± 1.61

50 2.13 ± 1.38 3.77 ± 2.14 2.77 ± 1.25 7.27 ± 1.34 8.33 ± 0.84 3.72 ± 2.07 4.55 ± 2.23 6.22 ± 1.39 6.25 ± 1.66

Table 2: Average rank (± std.) on the bag level for each method across all experiments and for ten different label frequencies.

Overall, PUMA outperforms the competing baseline and always achieving always the lowest average rank.

label frequency 𝑐 . Moreover, PUMA outperforms the runner-up puIF

on around 73% of the experiments. As a side note, PUMA’s learning

curves are relatively flat, which could indicate that it mainly focuses

on improving the bag-level predictions given the additional labels.

As a final remark, our approach is the only one that offers con-

sistently good performance on both the instance and bag levels.

While iAE’s is competitive on the bag level, its performance drops

off on the instance level. In contrast, puIF obtains competitive per-

formance on an instance level but performs poorly on a bag level.

Finally, RF achieves weak performance for low label frequencies

in both scenarios. These effects might be explained by considering

the purpose and assumptions made by each method. iAE assumes

that each positive bag only contains one positive instance. puIF is

designed to classify instances, not bags. RF assumes that unlabeled

bags only contain negative instances and that all instances inside a

positive bag belong to the positive class. Thus, for low frequencies,

many examples are incorrectly labeled as negative. PUMA, on the

other hand, is explicitly designed to handle both cases and selects

the number of reliable negatives based on the number of positive

bag labels.

Q2. Changing the number of ground-truth anomalies in

a bag. PUMA can handle a varying number of anomalies in any

given bag. However, the iAE was only evaluated in a context where

each positive bag contained at most one positive instance [19]. Fig-

ure 2 (top) compares the performance of PUMA and iAE in this
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Instance AUC (avg. ± std.) Instance ranks (avg. ± std.)

c% PUMA iAE RF cIF puIF PUMA iAE RF cIF puIF

5 0.75 ± 0.16 0.72 ± 0.17 0.58 ± 0.06 0.66 ± 0.13 0.68 ± 0.14 2.01 ± 1.06 2.67 ± 1.49 4.10 ± 1.24 3.27 ± 1.36 2.87 ± 1.14

10 0.77 ± 0.15 0.74 ± 0.18 0.63 ± 0.06 0.66 ± 0.14 0.71 ± 0.14 1.87 ± 1.04 2.70 ± 1.53 3.80 ± 1.30 3.67 ± 1.32 2.97 ± 0.96

15 0.78 ± 0.16 0.74 ± 0.18 0.67 ± 0.06 0.65 ± 0.15 0.73 ± 0.15 1.90 ± 1.12 2.77 ± 1.45 3.63 ± 1.35 3.87 ± 1.25 2.83 ± 1.02

20 0.79 ± 0.15 0.75 ± 0.18 0.70 ± 0.07 0.67 ± 0.14 0.75 ± 0.16 2.03 ± 1.17 2.83 ± 1.56 3.53 ± 1.46 3.77 ± 1.01 2.73 ± 1.28

25 0.80 ± 0.15 0.75 ± 0.18 0.72 ± 0.07 0.68 ± 0.14 0.76 ± 0.15 2.03 ± 1.03 3.00 ± 1.58 3.47 ± 1.55 3.90 ± 1.12 2.60 ± 0.97

30 0.81 ± 0.13 0.75 ± 0.18 0.74 ± 0.07 0.70 ± 0.14 0.76 ± 0.16 1.87 ± 0.90 2.97 ± 1.54 3.50 ± 1.61 3.90 ± 0.88 2.77 ± 1.14

35 0.81 ± 0.14 0.76 ± 0.18 0.76 ± 0.07 0.71 ± 0.15 0.76 ± 0.15 1.97 ± 1.07 2.77 ± 1.57 3.33 ± 1.58 3.83 ± 1.12 3.10 ± 0.99

40 0.82 ± 0.13 0.76 ± 0.18 0.78 ± 0.07 0.69 ± 0.14 0.76 ± 0.15 2.00 ± 1.11 2.97 ± 1.45 3.10 ± 1.60 4.00 ± 1.05 2.93 ± 1.11

45 0.82 ± 0.13 0.76 ± 0.17 0.80 ± 0.08 0.69 ± 0.14 0.76 ± 0.15 1.70 ± 0.88 2.97 ± 1.47 2.93 ± 1.46 4.23 ± 0.97 3.17 ± 0.99

50 0.83 ± 0.13 0.77 ± 0.18 0.81 ± 0.08 0.69 ± 0.15 0.76 ± 0.15 1.80 ± 0.81 2.97 ± 1.47 2.87 ± 1.46 4.07 ± 1.23 3.30 ± 1.06

Table 3: Average AUC and average rank on the instance level for each method across all experiments and for ten different label

frequencies. PUMA outperforms every baseline obtaining both the highest average AUC and the lowest average rank.

restricted setting on the 9 benchmark datasets used in [19]. Figure 2

(bottom) considers the more realistic scenario where a positive bag

can contain multiple anomalous instances (we randomly vary the

amount in [1, ⌈𝑘
2
⌉]). When there is one anomaly per positive bag,

PUMA has an overall performance similar to iAE both in terms of

average AUC and ranks: it performs clearly better on Annthyroid,

KDDCup, and Wilt, similar on Cardiotoc., Pageblocks, and Spam-

Base, and worse on Waveform, Internet, and Pima (3 datasets each

case). However, in the more realistic and general setting PUMA

outperforms iAE on 7 out of 9 datasets. This clearly shows how our

loss function leverages multiple high probabilities on an instance

level to derive the positive bag probability, as opposed to iAE, which

only cares for the highest instance probability.

Q3. Impact of 𝑅 on the performance of PUMA?. PUMA se-

lects |𝑅 | reliable negatives as representatives of the negative bag
distribution. Our intuition is that when there are few positive bag

labels (i.e., low label frequency 𝑐), identifying and including many

negatives in the labeled component 𝐿𝑝 of PUMA’s loss would make

the model unduly biased towards the negative class. In contrast, if

the label frequency 𝑐 is high and too few reliable negatives were

selected, the model would be biased toward the positive class and

underestimate the probability of unlabeled bags being negative.

This idea is confirmed by Figure 3, which shows how PUMA’s

performance changes when varying the proportion of reliable neg-

atives as a function of the label frequency 𝑐 on the 7 store datasets.

Hence, the heuristic of setting |𝑅 | = |𝑃 |, as confirmed by Basile et al.

[3], is reasonable.

Q4. Impact of 𝑘 on the performance of PUMA?. To assess the

impact of the instance sample size 𝑘 on the model performance,

we run experiments on the 7 retail store datasets, as the value of

𝑘 is interpretable. We vary 𝑘 to get a bag as half-day (𝑘 = 6), a

day (𝑘 = 12), two days (𝑘 = 24), three days (𝑘 = 36) and four days

(𝑘 = 48). Due to the computational cost, we limit the experiments to

40 positive and 60 negative bags selected at random, and consider

two representative label frequencies, 𝑐 = 10%, 30% (i.e., 4 and 12

positive labels). Figure 4 shows the results (mean ± std) for both

bag and instances. Overall, the pattern is slightly decreasing for

high values of 𝑘 , as the model has to propagate the bag label to

more instances. However, 𝑘 only has a small impact on the final

performance, as PUMA learns the bag probability through several

instances in the bag (weighted noisy-OR) instead of simply using

the max value (as does iAE).

Q5. How robust is PUMA to the presence of anomalies in the

unlabeled data? Because the unlabeled loss 𝐿𝑢 does not distin-

guish between normals and anomalies, we verify whether having

contaminated unlabeled instances weakens the whole model. Fol-

lowing the traditional anomaly detection pipeline, a straightforward

approach to remove the potential anomalies from the unlabeled

bags is to drop off the top 𝑡% instance scores before computing

𝐿𝑢 . By removing those instances during training, the autoencoder

does not improve its reconstruction of such potential anomalies,

but only learns how to reconstruct the normal patterns.

We experimentally test our hypothesis that dropping potential

anomalies could improve PUMA’s performance. We fix 𝑡% to be

[1%, 5%, 10%] and compare these three new baselines with our orig-

inal version, running the same experiments as before. On a bag

level, the three baselines obtain, respectively, an average rank of

2.14, 2.77, 3.06 while our original version gets 2.02 (all std. around

1). Similarly, on an instance level, the baselines achieve an average

rank of 2.34, 2.58, 2.99 while the original version gets 2.09 (all std.

around 1). Because there is no gained benefit to forcing the model

to ignore part of the unlabeled instances, we conclude the method

is quite robust to unlabeled anomalous instances.

6 CONCLUSION

In this paper, we tackled the problem of learning from positive

and unlabeled bags in anomaly detection, where a bag is a set of

instances. We proposed PUMA, a method that assigns instance

and bag probabilities by learning through a two-components loss

function. Via the unlabeled loss component 𝐿𝑢 , PUMA uses the

unlabeled bags to learn a representation of the seen examples in

order to detect novelties at the test time. Via the labeled loss com-

ponent 𝐿𝑝 , it uses the positive bags to learn (possible) anomalous

patterns in four steps. First, it parametrizes the instance probability

function by transforming the autoencoder’s anomaly scores into

probabilities through a sigmoid function (Platt scaling). Second,
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Figure 2: Comparison between PUMA’s and iAE’s performance on the restrictive Iwata et al. [19] setting where each positive

bag must contain exactly one anomaly (top) and the more realistic setting where bags may contain multiple anomalies (bottom).

While in the restricted scenario (top) the two methods perform similarly, in the more realistic general scenario PUMA clearly

outperforms iAE on 7 out of 9 datasets (bottom).
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Figure 3: PUMA’s bag AUC when varying the percentage

of reliable negatives as a function of 𝑐. PUMA’s perfor-

mance drops when the percentage of reliable negatives is

higher/lower than 𝑐.

it builds a bridge between the instance and the bag levels by us-

ing the weighted Noisy-OR, which derives the bag probabilities by

aggregating the instance probabilities with different weights. The

key insight to setting proper weights is that the instances with the

highest and the lowest probabilities in a bag should contribute more

to defining the bag label. Third, PUMA self-generates negative bag

labels by labeling the bags with the lowest positive probability as

negative. Finally, it measures the log-likelihood of the given labels

under the estimated bag probabilities and uses its negative value as

𝐿𝑝 . We theoretically showed that PUMA learns from this setting

even for large bag size 𝑘 . Empirically, we evaluated our method

on 21 benchmarks and 9 real-world datasets and compared it to

several baseline methods. Experimental results show that PUMA
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Figure 4: PUMA’s AUC on a bag (left) and an instance (right)

level for two label frequencies (10%, 30%) when varying the

bag size 𝑘 . The shade represents the uncertainty (standard

deviation) due to multiple experiments on multiple datasets.

Overall, PUMA’s performance is only weakly affected by the

bag size.

performs better than all the baselines both on an instance and a

bag level on the majority of the datasets.
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