
Learning from Positive and Unlabeled  
Multi-Instance Bags in Anomaly Detection

Lorenzo Perini, Vincent Vercruyssen, Jesse Davis
name.surname@kuleuven.be https://people.cs.kuleuven.be/~lorenzo.perini/

@LorenzoPerini95

https://people.cs.kuleuven.be/~lorenzo.perini/


2

Anomaly Detection is the Task of Detecting the Instances  
that Deviate from a Normal Behaviour
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However, Acquiring Labels Is Hard in Anomaly Detection 
Because Anomalies Are Rare Events
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What Happens in Some Cases Is that Experts Provide 
Coarse-Grained Labels by Flagging Anomalies on a Day Level
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What Happens in Some Cases Is that Experts Provide 
Coarse-Grained Labels by Flagging Anomalies on a Day Level
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In Other Cases, Experts Do Not Provide Labels at All
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In Other Cases, Experts Do Not Provide Labels at All
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Although Some Labels Are Provided on a Day Level, Experts 
Want the Detector to Make Predictions on an Instance Level 
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This Setting Falls Into the Field of Multi-Instance Learning, 
Where Only Some Positive Labels Are Given on a Bag Level

Multi-Instance Learning: is a form of weakly supervised learning where the learner has access 
to sets of instances, called bags.

PU Learning: is the setting where a learner only has access to positive and unlabeled data.
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Learning from Positive and Unlabeled Bags Has             
Three Main Challenges:

Link bags to instances     Overcome the absence of normals   Anomalies may not follow patterns
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Learning from Positive and Unlabeled Bags Has             
Three Main Challenges:
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How Can We Learn from Positive and Unlabeled Bags?
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We Introduce PUMA 
Positive and Unlabeled Multi-instance Anomaly detector

Loss-based anomaly detector that 
❖ Learns from PU bags;
❖ Predicts class probabilities both on an instance and on a bag level
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PUMA Trains an Autoencoder with a Two-Component Loss 
and Tackles the Challenges in Five Simple Steps 

18



A
ut

oe
nc

od
er

Instance 
Probability

sigmoid
pi

Instance 
Reconstruction 

Error

Input Bag

Reconstructed Bag

Step 1: PUMA Transforms the Instance Reconstruction Errors 
into Instance Probabilities
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Step 2: PUMA Connects Bag and Instance Probabilities 
through a Weighted Noisy-OR
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Step 3: PUMA Overcomes the Absence of Negative Labels 
by Pseudo-Labeling the Most Reliable Negatives
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Step 4: PUMA Measures the Quality of the Bag Probabilities 
Through the Log-Likelihood Function (Labeled Loss Lp)
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Step 5: PUMA Computes the Bag Reconstruction Error and 
Uses it as Unlabeled Component

23



Experiments: How does PUMA Compare to Existing Baselines?

24

Q1. How does PUMA’s bag and instance level performance compare to existing approaches?

Q2. How does PUMA’s performance vary upon changing the number of true anomalies in a bag?

Q3. How does changing the number of reliable negatives impact PUMA’s performance?

Q4. How does increasing the number of instances per bag impact PUMA’s performance?

Q5. How robust is PUMA to the presence of anomalies in the unlabeled data?



Extensive Experimental Setup

❖ 8 baselines;

❖ 30 datasets: 9 real world + 21 benchmark;

❖ Simulate collecting incrementally 5% of positive bag labels for 10 times;

❖ 5 fold cross-validation + 5 random repetitions each;

30 datasets x 10 label frequencies x 5 fold cv x 5 repetitions = 7500 total experiments
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Q1. How does PUMA’s bag and instance level performance 
compare to existing approaches?
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