

Operational, Uncertainty-Aware, and Reliable Anomaly Detection

Lorenzo Perini

Public PhD defence, 28.03.2024

Autonomous driving

Autonomous driving

Human-like robots

Autonomous driving

Human-like robots

Movie Recommendation

Autonomous driving

Human-like robots

Movie Recommendation

Data is Al's priming water

Tabular data

→ e.g., medical data

Image data

 \rightarrow e.g., online products

Text data

 \rightarrow e.g., web pages

Time series data → e.g., sensors

How does AI learn from data?

How does AI learn from data?

Task: Object recognition

How does Al learn from data?

How does AI learn from data?

How does AI learn from data? This is a table! input **CULU** screw hammer hammer ax OUTPUT AI model table User saw drill helmet table Task: Object recognition

How does AI learn from data?

AUTON A

screw

table

drill

What's the goal of all this?

Task: Object recognition

What's the goal of all this?

... and, of course, AI is much more than just this!

Data Mining

- \rightarrow aims at extracting patterns in large datasets
- \rightarrow involves methods at the intersection of AI and Statistics

Monitoring the "health" of wind turbines

Monitoring the "health" of wind turbines

Anomalies are unexpected and critical events

Anomalies are unexpected and critical events

Anomaly detection: how do we automatically detect <u>anomalous</u> events?

Anomaly detection: how do we automatically detect <u>anomalous</u> events?

The collected dataset is scarcely labeled or not labeled at all

A2. Anomalies are rare events

A3.

The recorded anomalies may not comprehensively represent all potential cases

Unique one-off anomalies may occur

Hurricane Katrina - August 2005 In all, Hurricane Katrina was responsible for 1,833 fatalities and approximately \$108 billion in damage (un-adjusted 2005 dollars). On August 23rd, a tropical ...

Da	y Temperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)
1	14	25	0.6	200	55
2	12	55	2.8	180	95
3	11	62	6.1	220	160
4	12	35	4.5	190	145
5	7	30	0.8	170	52
e	2	85	5.2	180	57
7	10	48	4.6	185	143

Tabular data

T

Day	Temperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)
1	14	25	0.6	200	55
2	12	55	2.8	180	95
3	11	62	6.1	220	160
4	12	35	4.5	190	145
5	7	30	0.8	170	52
6	2	85	5.2	180	57
7	10	48	4.6	185	143

Day	Temperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)
1	14	25	0.6	200	55
2	12	55	2.8	180	95
3	11	62	6.1	220	160
4	12	35	4.5	190	145
5	7	30	0.8	170	52
6	2	85	5.2	180	57
7	10	48	4.6	185	143

Day	Temperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)
1	14	25	0.6	200	55
2	12	55	2.8	180	95
3	11	62	6.1	220	160
4	12	35	4.5	190	145
5	7	30	0.8	170	52
6	2	85	5.2	180	57
7	10	48	4.6	185	143

Day	Temperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)	Anomaly Scores
6	2	85	5.2	180	57	49.5
2	12	55	2.8	180	95	48.8
3	11	62	6.1	220	160	41.4
1	14	25	0.6	200	55	31.4
5	7	30	0.8	170	52	31.5
4	12	35	4.5	190	145	14.2
7	10	48	4.6	185	143	14.2

The literature of anomaly detection has focused on designing new algorithms <u>but largely ignored three practical challenges</u>

Suppose the task is to decide whether an unknown test sample is anomalous or not

Gap 1: Experts cannot make decisions based solely on scores because they are not interpretable

	Day	Temperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)	Anomaly Scores
	6	2	85	5.2	180	57	49.5
	2	12	55	2.8	180	95	48.8
	3	11	62	6.1	220	160	41.4
in	1	14	25	0.6	200	55	31.4
	5	7	30	0.8	170	52	31.5
	4	12	35	4.5	190	145	14.2
	7	10	48	4.6	185	143	14.2

train

test	

Temperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)	Anomaly Scores
10	60	6.9	220	120	40

Gap 1: Experts cannot make decisions based solely on scores because they are not interpretable

	Day	Temperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)	Anomaly Scores	
	6	2	85	5.2	180	57	49.5	
	2	12	55	2.8	180	95	48.8	
	3	11	62	6.1	220	160	41.4	
n	1	14	25	0.6	200	55	31.4	
	5	7	30	0.8	170	52	31.5	
	4	12	35	4.5	190	145	14.2	
	7	10	48	4.6	185	143	14.2	

train

test

Temperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)	Anomaly Scores
10	60	6.9	220	120	40

Gap 1: Experts cannot make decisions based solely on scores because they are not interpretable

	Day	Temperature (C)	Humidity (%) Wind Speed (m/s) Solar Radiation (W/m2	2) Energy (kWh)	Anomaly Scores
	6	2	85	5.2	180	57	49.5
	2	12	55	2.8	180	95	48.8
	3	11	62	6.1	220	160	41.4
train	1	14	25	0.6	200	55	31.4
	5	7	30	0.8	170	52	31.5
	4	12	35	4.5	190	145	14.2
	7	10	48	4.6	185	143	14.2
	_						
toot		Cemperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)	Anomaly Scores
lest		10	60	6.9	220	120	40

Experts

What's missing?

→ An estimate of the expected proportion of anomalies, i.e. the "contamination" level

Why do we need it?

→ For decision making: we need to know whether a sample is **anomalous** "enough"

Contribution #1: Estimating the contamination of a dataset

Energy (kWh)

I ahel

We analyze three realistic yet different settings

we are able to collect some normal labels

T	•
wind	
turbine	

Dav

?	55 95	200	0.6	25	14	1
?	95	100				
		180	2.8	55	12	2
?	160	220	6.1	62	11	3
Normal	145	190	4.5	35	12	4
?	52	170	0.8	30	7	5
?	57	180	5.2	85	2	6
Normal	143	185	4.6	48	10	7

Temperature (C) Humidity (%) Wind Speed (m/s) Solar Radiation (W/m2)

Contribution #1: Estimating the contamination of a dataset

We analyze three realistic yet different settings

its true value is given for a related domain

	Day	Temperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)
	1	14	25	0.6	200	55
	2	12	55	2.8	180	95
	3	11	62	6.1	220	160
	4	12	35	4.5	190	145
	5	7	30	0.8	170	52
	6	2	85	5.2	180	57
WIND	7	10	48	4.6	185	143
turbine B						

Tabular data

KU LEUVEN

Contribution #1: Estimating the contamination of a dataset

We analyze three realistic yet different settings

Temperature (C) Humidity (%) Wind Speed (m/s) Solar Radiation (W/m2) Energy (kWh) Day 0.6 2.8 6.1 4.5 0.8 5.2 4.6

Now, we have "three" ways to estimate "how anomalous" a sample has to be to get detected as an anomaly

	Day	Temperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)	Anomaly Scores
	6	2	85	5.2	180	57	49.5
	2	12	55	2.8	180	95	48.8
	3	11	62	6.1	220	160	41.4
train	1	14	25	0.6	200	55	31.4
	5	7	30	0.8	170	52	31.5
	4	12	35	4.5	190	145	14.2
	7	10	48	4.6	185	143	14.2

< 41.4

toot	Temperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)	Anomaly Scores	Prediction
lesi	10	60	6.9	220	120	40	Normal
							1st contrib.

Al mode

Now, we have "three" ways to estimate "how anomalous" a sample has to be to get detected as an anomaly

	Day	Temperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)	Anomaly Scores	
	6	2	85	5.2	180	57	49.5	
	2	12	55	2.8	180	95	48.8	
	3	11	62	6.1	220	160	41.4	
train	1	14	25	0.6	200	55	31.4	4
	5	7	30	0.8	170	52	31.5	
	4	12	35	4.5	190	145	14.2	
	7	10	48	4.6	185	143	14.2	

< 41.4

test	Temperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)	Anomaly Scores	Prediction
	10	60	6.9	220	120	40	Normal

There is no *free lunch*: transforming scores into predictions introduces **uncertainty** into the problem

Gap 2: Experts may refuse to use anomaly detection models because they do not know how reliable predictions are

	Day	Temperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)	Anomaly Scores	
	6	2	85	5.2	180	57	49.5	
	2	12	55	2.8	180	95	48.8	
	3	11	62	6.1	220	160	41.4	
rain 1	1	14	25	0.6	200	55	31.4	41.4
	5	7	30	0.8	170	52	31.5	
	4	12	35	4.5	190	145	14.2	
;	7	10	48	4.6	185	143	14.2	
les	_	_						
	Day	Temperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)	Anomaly Scores	
ted	6	2	85	5.2	180	57	49.5	
	3	11	62	6.1	220	160	41.4	
	2	12	55	2.8	180	95	25.3	25.2
rain 2	8	10	35	2.9	177	80	23	25.5
i alli Z	1	14	25	0.6	200	55	20	
	9	7	21	1.6	193	72	20	
	4	12	35	4.5	190	145	14.2	
	7	10	48	4.6	185	143	14.2	
	5	7	30	0.8	170	52	5.5	
	10	3	29	2.2	168	49	5.5	

Three samp collect

t

+	Temperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)	Anomaly Scores
ι	10	60	6.9	220	120	40

Gap 2: Experts may refuse to use anomaly detection models because they do not know how reliable predictions are

Gap 2: Experts may refuse to use anomaly detection models because they do not know how reliable predictions are

Contribution #2: Quantifying a model's uncertainty

Given:

Compute stability:

Perini L, Vercruyssen V, Davis J: Quantifying the confidence of anomaly detectors in their example-wise predictions, ECML-PKDD 2020 44

Al model

Now, we have a way to estimate a model's stability for a test prediction

	Day	Temperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)	Anomaly Scores	
	6	2	85	5.2	180	57	49.5	
	2	12	55	2.8	180	95	48.8	
	3	11	62	6.1	220	160	41.4	
train	1	14	25	0.6	200	55	31.4	14
	5	7	30	0.8	170	52	31.5	
	4	12	35	4.5	190	145	14.2	
	7	10	48	4.6	185	143	14.2	

< 41.4

toot	Temperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)	Anomaly Scores	Prediction	Stability
lesi	10	60	6.9	220	120	40	Normal	50%
							1st contrib.	2nd contrib.

Now, we have a way to estimate a model's stability for a test prediction

	Day	Temperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)	Anomaly Scores	
train	6	2	85	5.2	180	57	49.5	
	2	12	55	2.8	180	95	48.8	
	3	11	62	6.1	220	160	41.4	
	1	14	25	0.6	200	55	31.4	
	5	7	30	0.8	170	52	31.5	
	4	12	35	4.5	190	145	14.2	
	7	10	48	4.6	185	143	14.2	

< 41.4

test	Temperature (C)	Humidity (%)	Wind Speed (m/s)	Solar Radiation (W/m2)	Energy (kWh)	Anomaly Scores	Prediction	Stability
	10	60	6.9	220	120	40	Normal	50%
							1st contrib.	2nd contrib.

How can we use such uncertainty estimate to improve decision making?

Gap 3: Experts avoid the risk of making wrong decisions by not trusting the model even when it shows minimal uncertainty

Contribution #3: We allow the model to abstain

Contribution #3: We allow the model to abstain

In conclusion, we made our anomaly detection model Operational, Uncertainty-Aware, and Reliable

Al model

Operational, Uncertainty-Aware, and Reliable Anomaly Detection

Lorenzo Perini

Public PhD defence, 28.03.2024