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Abstract. Anomaly detection attempts to learn models from data that
can detect anomalous examples in the data. However, naturally occurring
variations in the data impact the model that is learned and thus which
examples it will predict to be anomalies. Ideally, an anomaly detection
method should be robust to such small changes in the data. Hence, this
paper introduces a ranking stability measure that quantifies the robust-
ness of any anomaly detector’s predictions by looking at how consistently
it ranks examples in terms of their anomalousness. Our experiments in-
vestigate the performance of this stability measure under different data
perturbation schemes. In addition, they show how the stability measure
can complement traditional anomaly detection performance measures,
such as area under the ROC curve or average precision, to quantify the
behaviour of different anomaly detection methods.

Keywords: Ranking Stability · Anomaly Detection · Classifier Trust.

1 Introduction

Anomaly detection attempts to find examples in a dataset that do not conform
normal behaviour. It has many applications in areas such as fraud detection,
medical disease detection, and cyber security [5]. Because anomalies are in nature
unexpected and happen infrequently, the datasets observed in many anomaly
detection tasks are especially prone to variation. Hypothetically, if we could
collect a dataset multiple times, it would contain different anomalous and normal
examples each time. Consequently, an anomaly detection model learned from the
data, will each time be slightly different and make different predictions. It would
be valuable to quantify just how consistent a detector’s predictions are under
variations in the training data. We refer to this as the detector’s stability.

Anomaly detection is typically tackled from an unsupervised perspective be-
cause acquiring labels in real world use cases is expensive [17]. For instance,
you will not simulate a medical error simply to have an example of anomalous
behaviour. Given some training data, an anomaly detection model assigns an
anomaly score to each example in the test set. Because the magnitude of this
score conveys the anomalousness of an example, a ranking can be constructed
over the test set examples from most to least anomalous. This helps the user to
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Fig. 1: Illustration of how uncertainty in which training data are observed leads
to instability in the rankings. For five iterations (columns), we take a random
subset from each dataset (blue dots) to train an Lof model, predict the anomaly
scores for the test set examples (orange triangles), and rank them from least
anomalous (rank 1) to most anomalous (rank 5). Clearly, small perturbations
of dataset 2 have a smaller effect on the consistency of Lof’s predictions than
small perturbations in dataset 1.

inspect the predictions in a structured way. However, user trust in the anomaly
detector’s predictions will quickly erode if retraining the model on a slightly
different version of the training data yields different predictions (and thus a dif-
ferent ranking). Figure 1 illustrates this process on two toy datasets. Due to
different examples being observed in each dataset, the anomaly detection model
ranks the test set examples differently each time it is retrained on a subset of
the dataset. If the user could quantify the stability of a model, it would help her
decide which model to use or how to collect her data.

To the best of our knowledge, this paper is the first to contribute a ranking
stability measure for quantifying the robustness of anomaly detection methods.
The stability measure is constructed by retraining an anomaly detector multi-
ple times on different subsets of the training data, each time constructing the
ranking over the test set examples, and measuring the consistency between these
rankings. The stability measure is computed in a completely unsupervised man-
ner, unlike popular existing performance measures for anomaly detection that
require labeled data, such as the area under the ROC curve or average preci-
sion [4]. In contrast, our stability measure captures a different aspect of a model’s
performance, namely its ability to consistently make the same predictions for a
set of examples when the training data change.1 We perform an extensive em-
pirical evaluation of our stability measure and show that it indeed responds
meaningfully to changes in the training data. Finally, we conduct a compari-
son between seven state-of-the-art anomaly detection methods in terms of the
stability measure and traditional performance measures.

1 We will experimentally validate this claim in Section 4 by measuring correlations
between our stability measure and existing performance measures.
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2 Related Work

Numerous anomaly detection methods have been developed during the past
decades [4,6]. The focus of this paper, however, is not on any particular method,
but on designing a way to measure the stability of a method. The most closely
related work in this area is [14]. The authors develop ExCeeD, a method to
estimate the confidence of any anomaly detector in its example-wise predictions.
In contrast, our stability measure does not look at binary predictions but at how
different examples are comparatively ranked by an anomaly detector, providing
an aggregate picture of stability instead.

The idea of stability has sprung up in different areas of machine learning.
In particular, [10] proposed a point stability measure with respect to clustering.
It captures the idea that if two examples belong to the same cluster executed
on some subset of the data, they do not necessarily belong to the same cluster
if the full dataset is clustered. Similarly, we are interested in the stability of
an example’s ranking by an anomaly detector. Our measure, however, is not
suitable for clustering, while the metrics developed in [10] cannot be applied to
anomaly detection or rankings.

Social choice theory studies how individual opinions, preferences, or interests
(i.e., rankings of items) can be combined to form a social consensus. Most work is
being done on developing algorithms that can derive the consensus ranking from
individual’s rankings [1]. In addition, rank correlation and rank distance metrics
have been developed to measure the agreement between a pair of orderings of
items [7]. In contrast, the fundamental insight of our stability measure is that,
within the context of anomaly detection, (small) changes in the rank position of
an example near the top of the ranking should contribute more to the aggregate
stability than (large) changes near the bottom of the ranking.

Ensemble methods for anomaly detection often make use of rank aggrega-
tion techniques to aggregate the predictions of the different ensemble mem-
bers [19,18]. In contrast, we look at rank aggregation from a post-hoc evalu-
ation perspective. Our stability measure captures consistency in the rankings,
but cannot be used to make predictions. This is akin to the intuition behind
internal evaluation measures for anomaly detection such as Ireos [12,13], where
the goal is to evaluate the predictive performance of anomaly detectors without
access to the ground truth. Our stability measure does not evaluate predictive
performance, however, but rather robustness of the predictions.

3 Methodology

This paper tackles the following problem:

Given: a training dataset Dtrain and a test set Dtest, an anomaly detection
model h, and a contamination factor γ;

Design: a stability measure Sh that quantifies the ability of the model h to
rank the examples in Dtest consistently under variations in Dtrain.
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A trained anomaly detection model h computes an anomaly score for each ex-
ample in Dtest. These scores can be used to create a ranking of the test examples
from least to most anomalous. Our key insight is that an unstable model will
not produce consistent rankings when retrained on different, uniformly sampled
subsets of the training data: the same test set example will sometimes be ranked
high and sometimes low. Thus, we can define a model’s stability in terms of the
examples’ stabilities:

Sh := 1
nt

nt∑
j=1
Sxj , (1)

where, for each example xj in the test set Dtest of size nt, Sxj
captures the

consistency in its position in the ranking when retraining h multiple times on
variations of Dtrain. We can now estimate the model stability Sh in three steps.
First, we randomly draw subsets from the training set Dtrain to simulate slight
changes in the set of available training examples. Each time, we retrain model h
and construct a ranking over Dtest. Second, we assign a stability score to each
test set example by taking into account both the variance and the range of its
normalized rank positions. Third, we aggregate the stability scores of all test set
examples to obtain the model score Sh.

3.1 Generating Anomaly Rankings

Our goal is to design a measure that captures an anomaly detector’s consistency
in ranking test examples under slight variations of the training data. To simulate
these variations, we draw I different subsetsDi fromDtrain without replacement,
with i = 1, . . . , I and |Di| randomly selected as a percentage of |Dtrain|. Each
time, we retrain h and use it to predict the anomaly score of each test set
example. This results in I sets of scores

S(I) = {S(i) ⊆ Rnt : i = 1, . . . , I} = {{s(i)
1 , . . . , s(i)

nt
∈ R : nt ∈ N} : i = 1, . . . , I},

where
s

(i)
j = hDi

(xj)

is the anomaly score of the example xj through h when training on subset
Di ⊆ Dtrain, and nt is the number of test set examples. Then, we define the
rank positions of each example xj as

r
(I)
j = {r(i)

j ∈ {1, . . . , nt} : i = 1, . . . I}, (2)

where r(i)
j represents the position of the score sj among the nt scores when the

examples are sorted from lowest anomaly score (position 1) to highest anomaly
score (position nt). We normalize the rank positions by dividing each r(i)

j by nt.
Thus, for any example xj ∈ Dtest, its normalized list of rank positions will be
referred to as r(I)

j . For instance, the normalized rank positions of example 1 in
dataset 1 of Figure 1 (red box) are [1.0, 0.8, 0.2, 0.2, 1.0].
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3.2 Example-Wise Stability Score
An example’s stability quantifies the variation in its normalized rank positions.
The most obvious way to do this is to measure the standard deviation of an
example’s rank positions. However, this does not reflect that some changes in
ranking are intuitively more important than others. Whether two normal exam-
ples change position in the ranking is not so important as whether an anomaly
suddenly ranks lower than a normal example. In other words, we care mostly
about variations in the top part of the ranking that presumably contains the
anomalies (or at least the examples that the model thinks are the anomalies).
Knowing the proportion of anomalies in the test set, i.e., the contamination fac-
tor γ, we can consider all examples in the top (1−γ) % of the ranking to be the
anomalies, while the rest are the normals. Thus, for each example xj ∈ Dtest,
we compute its stability score as:

Sxj
= 1− 1

Z

[√
Var

[
r

(I)
j

]
× ω

(
r

(I)
j ; γ

)]
(3)

where the first multiplicative term is the standard deviation of an example’s
rank positions. This term has values in the range [0, 0.5], as proven in Theorem 1
(see Appendix). The ω-term captures the intuition that an example’s ranking
should be considered more unstable if its rank positions change near the top as
determined by γ. Finally, Z is a normalization constant (see Section 3.3).

To model the ω-term, we make use of a Beta (α, β) distribution defined over
the range of all possible normalized rank positions (going from 0 to 1). By
carefully setting the α and β parameters, the shape of the distribution can
be tailored to our task. First, we set the parameters such that the mode of
the distribution coincides with the threshold between predicted anomalies and
normals:

α− 1
α+ β − 2 = 1− γ =⇒ γα− (1− γ)β = 2γ − 1. (4)

Second, we require that ψ% of the mass of the Beta distribution falls within the
interval [1−2γ, 1]. This has the intuitive interpretation that rank changes within
this interval have more weight. Hyperparameter ψ is set by the user. To enforce
these constraints, we solve the following optimization problem:

min
α,β

[(1− ψ)− Fα,β(1− 2γ)]2 (5a)

subject to α ≥ 1, β ≥ 1, (5b)
γα− (1− γ)β = 2γ − 1 (5c)

where Fα,β(1 − 2γ) is the cumulative density function of a Beta distribution
governed by parameters α and β and evaluated at rank position 1− 2γ.

The key insight is that the area under the Beta distribution can capture the
uncertainty caused by the spread of all possible rankings of an example:

ω
(
r

(I)
j ; γ

)
=
∫ maxi

{
r

(i)
j

}
mini

{
r

(i)
j

} xα−1(1− x)β−1

B (α, β) dx, (6)
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where B (α, β) is the beta function. Thus, an example that has a large range
of rankings, as indicated by [mini{r(i)

j },maxi{r(i)
j }], or whose range is closer

to the top of the ranking, is penalized more when computing its stability. If an
example is ranked as both the most anomalous (position nt) and least anomalous
(position 1) when training h on different subsets, it gets the maximum penalty
possible, which is 1 (the entire area under the Beta distribution).

3.3 The Model Stability Measure

The model stability measure Sh takes values in the range [0, 1], where a score
of 1 means that each of the I rankings is identical. We set the normalization
constant Z of Equation 3 such that a stability score of 0 corresponds to a model
that produces completely random rankings each time it is retrained. In fact,
we assume that a model performing worse than randomly ranking the examples
also gets a stability measure equal to 0, as we are not interested in measuring
stability for such unstable scenarios. Thus, in a random scenario (i.e. worst case),
the constant Z is equal to the standard deviation of a discrete uniform random
variable, as shown in Theorem 2 (see Appendix).

The final stability measure for a model h is obtained by taking the average of
the stability scores of all test set examples, as defined in Equation 1. The sample
mean allows us to infer a unique stability measure for model h by uniformly
weighting all the example-wise stability scores.

4 Experiments

In this section, we try to answer the following questions:2

Q1: Does the stability measure behave as we would expect it to?
Q2: How do the hyperparameters of the stability measure influence its value?
Q3: Can we use the stability measure to compare different anomaly detection

algorithms, complementing traditional performance measures?

Data. For all experiments in this section, results are presented on 9 datasets that
are commonly used in anomaly detection [4]. The datasets vary in number of
samples, dimensionality, and γ.3

Anomaly Detectors. To test the stability measure, we use 7 well-known anomaly
detectors: Lof [3], Knno [15], iForest [11], Hbos [8], Inne [2], Ocsvm [16],
and Cblof [9].

4.1 Results Q1: Behaviour of the Stability Measure

To see whether the stability measure behaves as we would like it to, we test the
following hypothesis: “an anomaly detector trained on subsequent biased subsets
2 Code available at: https://github.com/Lorenzo-Perini/StabilityRankings_AD.
3 Details of data: https://www.dbs.ifi.lmu.de/research/outlier-evaluation/

https://github.com/Lorenzo-Perini/StabilityRankings_AD
https://www.dbs.ifi.lmu.de/research/outlier-evaluation/
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Fig. 2: The figure illustrates how the stability measure behaves under two dif-
ferent strategies to sample the I subsets: uniform sampling (continuous lines)
and biased sampling (dashed lines). We vary both the number of iterations I
(x-axis) and hyperparameter ψ (lines). Biased sampling of the subsets decreases
the stability.

of a dataset, should have a lower stability than the same detector trained on
random subsets of the same dataset.” To simulate this, we compute two versions
of our stability measure for a given dataset: (1) a version where the I subsets
are drawn uniformly from Dtrain; (2) a version where the subsets are drawn in a
biased manner. In practice, we achieve the latter by first clusteringDtrain into 10
clusters and assigning a random weight to all instances in each cluster between
every subset iteration. For a given dataset, we repeat this experiment for three
anomaly detectors (Lof, Knno, and iForest) using 5-fold cross-validation for
each detector, and report the average stability over all folds and detectors. We
use different detectors to factor out the dependence on a single model.

Figure 2 shows the results for each of the 9 benchmark datasets. The plot
also shows how the stability changes for values of hyperparameters I and ψ. The
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Fig. 3: Each dot of a certain color represents the stability and area under the ROC
curve achieved by one of the 7 anomaly detectors with a given hyperparameter
setting on the dataset. The large dots are the corresponding averages per method.
The figure illustrates that the different detectors have varying stabilities.

results confirm our hypothesis: the stability of an anomaly detector trained on
uniformly drawn subsets is always higher than that of the same detector trained
on biased subsets. This provides evidence that our stability measure conforms
our intuitions on how it should behave.

4.2 Results Q2: Hyperparameters

The stability measure has two hyperparameters: the number of iterations I and
the shape of the Beta distribution ψ. Figure 2 shows how the stability measure
changes for different values of these hyperparameters. For each of the 9 datasets,
it seems that the stability measure converges after about 250 iterations. For most
datasets, the value of ψ does not have a large impact as long as it is around 75%.
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Fig. 4: Comparison of different anomaly detectors in terms of: stability, AUROC,
and average precision. For each method and measure, a box plot shows the
full range of results obtained over all benchmark datasets and hyperparameter
settings.

4.3 Results Q3: Comparing Anomaly Detectors

We apply the 7 anomaly detection methods, each with a variety of hyperparam-
eter settings, to the benchmark datasets and record our stability measure, the
area under the ROC curve (AUROC), and the average precision. We compute
them using 5-fold cross-validation. Figure 3 plots the results as a scatter plot
where each dot represents both the stability and AUROC achieved by applying
a method with a certain hyperparameter setting to the corresponding dataset.
A large dot corresponds to the performance of a method averaged over all its
hyperparameter settings. The figure allows us to compare different methods in
terms of their stability. In all datasets, Ocsvm has on average the highest sta-
bility, meaning that the method is most robust to changes in the training data.
The least stable method is Cblof, which might not be surprising given that it
relies on a k-means clustering subroutine and changes in the data easily affect
which clusters are found.

Figure 4 aggregates all results for each method and per measure (stability,
AUROC, and average precision) over the entire benchmark. Both Knno and
Ocsvm seem to be stable methods. Finally, the Pearson correlations between
stability and AUROC and average precision are around −0.05 and −0.4 re-
spectively, indicating that our stability measure captures a different aspect of
performance than those traditionally used metrics.

5 Conclusion

We proposed a method to quantify the robustness of anomaly detectors by mea-
suring the ranking stability under slight variations of the training data. The
method estimates the stability in three steps. First, we simulate perturbations in
the training set by drawing i.i.d. subsets. Second, we estimate the example-wise
stability score by taking into account both the standard deviation of normalized
rankings and the area under a Beta distribution. Third, we derive the stabil-
ity measure by averaging the normalized stability score. The experiments show
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that the stability measure can meaningfully capture ranking variations and be a
valid alternative to traditional performance measures to quantify the behaviour
of different anomaly detectors.
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6 Appendix

Theorem 1. Let (Ω,=,P) be a probability space, where Ω is a set, = represents
a σ-algebra over Ω and P is a probability measure. Assume that X ∈ L2 is a real
random variable (continuous or discrete), such that X : Ω → V ⊆ [0, 1]. Then,

0 ≤ Var [X] ≤ 1
4 .

Proof. Assuming that 0 ≤ X ≤ 1,

Var [X] = E
[
X2]− E [X]2 ≤ E [X]− E [X]2 ,

where the inequality holds because 0 ≤ X ≤ 1. Then,

Var [X] ≤ E [X]− E [X]2 = −
(
E [X]2 − E [X]

)
= −

[(
E[X]− 1

2

)2
− 1

4

]
= 1

4 −
(
E[X]− 1

2

)2
≤ 1

4 .

Theorem 2. Let X be a discrete random variable over the probability space
(Ω,=,P), where Ω = {1, 2, . . . , nt}, nt ∈ N, = a σ−algebra over Ω and P a prob-
ability measure. Assume that X follows a discrete uniform distribution. Then,
the random variable X

nt
has mean and variance, respectively, equal to

E
[
X

nt

]
= nt + 1

2nt
, Var

[
X

nt

]
= (nt + 1)(nt − 1)

12n2
t

(7)
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Proof. We can directly compute the mean and the variance of X
nt

by using the
properties of random variables. First, we compute first and second moment of a
discrete uniform random variables:

E [X] =
v∑
j=1

xj · P(X = xj) = 1
nt

nt∑
j=1

j = nt + 1
2

E
[
X2] =

nt∑
j=1

x2
j · P(X = xj) = 1

nt

nt∑
j=1

i2 = (nt + 1)(2nt + 1)
6 .

(8)

Second, we achieve the goal as follows:

E
[
X

nt

]
= 1
nt

E[X] = nt + 1
2nt

;

Var
[
X

nt

]
= 1
n2
t

Var [X] = 1
n2
t

[
E
[
X2]− E [X]2

]
= (nt + 1)(nt − 1)

12n2
t

.

(9)
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