

A Ranking Stability Measure for Quantifying the Robustness of Anomaly Detection Methods

Lorenzo Perini, Connor Galvin, Vincent Vercruyssen

EDML 2020

https://people.cs.kuleuven.be/~lorenzo.perini/

Does the ranking change when drawing different training sets from the same distribution?

3

Does the ranking change when drawing different training sets from the same distribution?

2

3

How **stable** is the model in making anomaly rankings?

2

3

1

We Aim To Quantify the Robustness of Anomaly Detectors

Anomaly Detector 2

3	1	4	2
2	1	4	3
4	1	2	3
2	1	З	4
1	2	З	4

Anomaly Rankings

Anomaly Detector 3

We Aim To Quantify the Robustness of Anomaly Detectors

Anomaly Rankings

We Aim To Quantify the Robustness of Anomaly Detectors

• Given:

Training and test sets, and an anomaly detection model;

• *Do:*

Design a stability measure quantifying the ability of the model to rank the test examples consistently under variations in the training set.

Which Model Would you Trust More?

How to quantify the robustness of any anomaly detector?

End of the spotlight presentation

Unlabeled Data

Ranking Stability Measure A 3-step approach for estimating the robustness

Step 1: Drawing Random Subsets to Simulate Slight Changes in the Training set

Step 3: Aggregating the Example Scores to a Model Score

Each example has a stability score:

Example score \approx standard deviation \times area under the Beta

To obtain the model score, we average the example-wise scores:

Model stability score
$$=\frac{1}{N}\sum_{i=1}^{N}Example$$
 score i

The model score is normalized such that:

- 0 = random rankings;
- 1 = perfect agreement between rankings.

Experiments

Empirical evaluation on benchmark datasets

Does Stability Measure Allow Cross-Comparisons Among Anomaly Detectors, Complementing Traditional Measures?

Does Stability Measure Allow Cross-Comparisons Among Anomaly Detectors, Complementing Traditional Measures?

How does our Stability Measure behave when Biased Subsets are drawn?

How does our Stability Measure behave when Biased Subsets are drawn?

0

 \bigcirc

Biased Subsampling Strategies Lead to Less Stable Anomaly Detectors

Stability Measure Is a Valid Alternative To Traditional Performance Measures to Quantify Models' Behaviour

We proposed a *novel stability measure* to quantify the robustness of anomaly detection methods:

1. This measure allows meaningful cross-comparison of different methods;

2. This measure behaves realistically in our experiments.

All code and experiments are available online:

https://github.com/Lorenzo-Perini/StabilityRankings_AD

Contact us

name.surname@kuleuven.be

Lorenzo Perini, Connor Galvin, Vincent Vercruyssen

EDML 2020

https://people.cs.kuleuven.be/~lorenzo.perini/

