

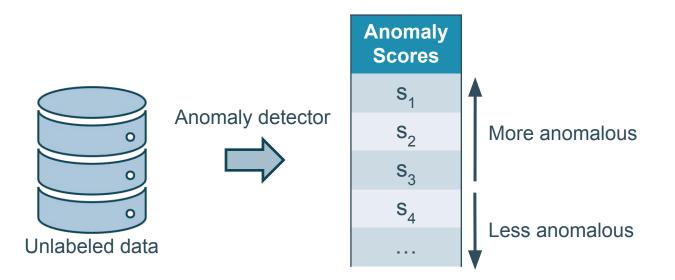
### Transferring the Contamination Factor between Anomaly Detection Domains by Shape Similarity

Lorenzo Perini, Vincent Vercruyssen, Jesse Davis AAAI 2022

https://people.cs.kuleuven.be/~lorenzo.perini/

@LorenzoPerini95

Anomaly detectors compute anomaly scores indicating how anomalous examples are



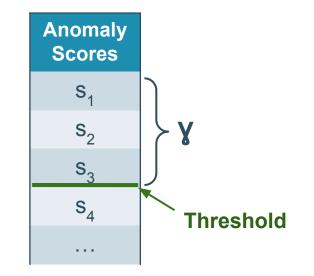
Anomaly detection is usually tackled from an unsupervised perspective, because *labels are expensive or difficult to acquire* 

### Converting anomaly scores to hard predictions is challenging without labels

In practice, one needs the model's hard predictions for decision making.

A common approach is to set the threshold based on the contamination factor  $\boldsymbol{\gamma}$ 

*In practice, it is the user that has to provide such a contamination factor* 



# Monitoring a fleet of assets makes the domain knowledge hard to acquire

- Many practical scenarios involve a fleet of assets
- Each asset has its own different contamination factor
- It is unfeasible that the user provides all the contamination factors

How to estimate the contamination factor with "limited" domain knowledge?



KU LEUVEN

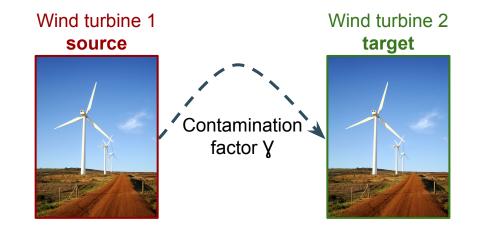
#### What we propose is to use Transfer Learning

#### GIVEN:

- $\star$  An anomaly detection model;
- ★ an unlabeled source domain with a known contamination factor;
- ★ an unlabeled target domain;

#### DO:

★ estimate the contamination factor of the target domain.



### Task: transfer the contamination factor between related unlabeled anomaly detection domains



# How can we transfer the contamination factor?



#### This Paper Makes Four Contributions:

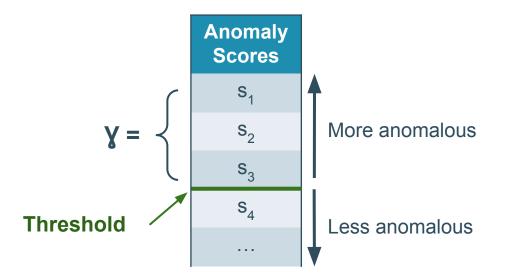
- 1. Introduce the problem of transferring the contamination factor  $\mathbf{Y}$ ;
- 2. Propose a 4-step approach TrADe that:
  - 2.1. computes the anomaly scores in each domain separately using the same anomaly detection algorithm;
  - 2.2. sets the threshold on the source domain based on the given  $\mathbf{Y}$ ;
  - 2.3. estimates the target threshold by exploiting the domains similarity;
  - 2.4. derives the target contamination factor as the proportion of scores above the target threshold.
- 3. Analyze the convergence behaviour of TrADe when increasing the target size;
- 4. Perform an extensive empirical evaluation on benchmark and real world data.

# Why is the contamination factor relevant in anomaly detection?



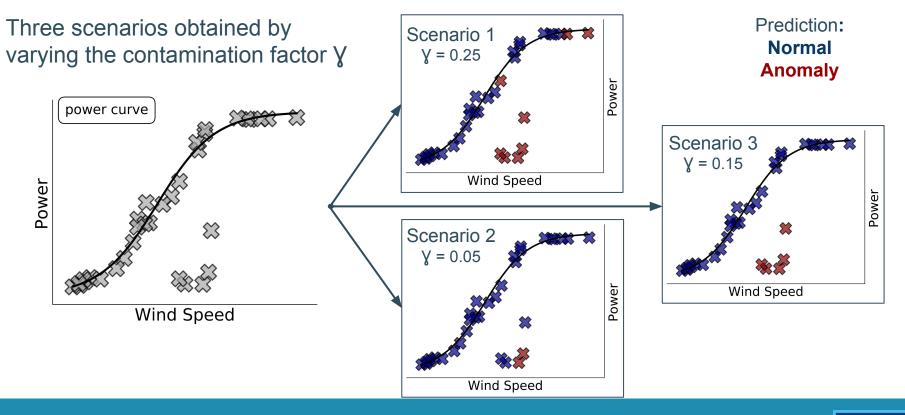
#### The contamination factor $\gamma$ allows to set a threshold

The contamination factor **y** is the *expected proportion* of anomalies in the data.



What's the impact of the contamination factor on the model predictions?

#### $\gamma$ has a relevant impact on the model performance

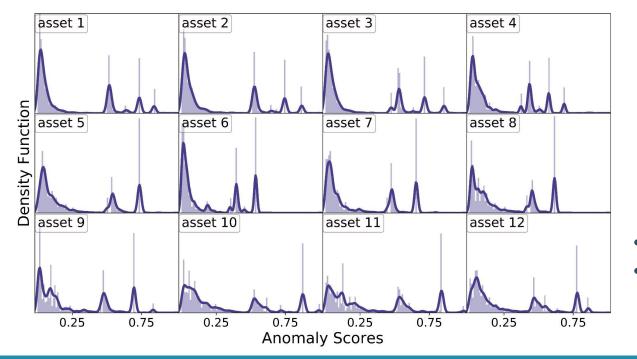




### TrADe: <u>Transferring the contamination factor</u> between <u>Anomaly De</u>tection domains by shape similarity



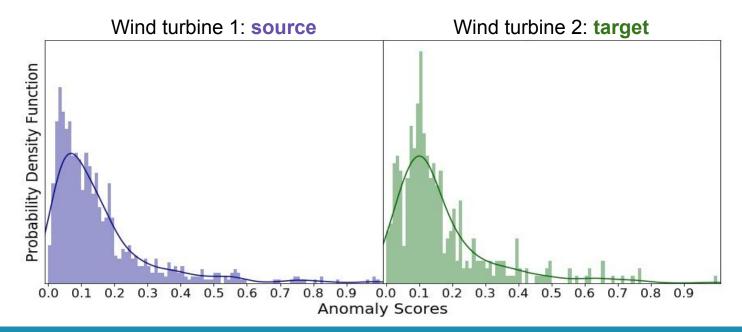
# Assumption: normal anomaly scores produced by the same algorithm are similarly distributed



- 12 proprietary ds
- Same anomaly detection algorithm

### **Step 1**. Use the same algorithm to compute the anomaly scores of the two domains

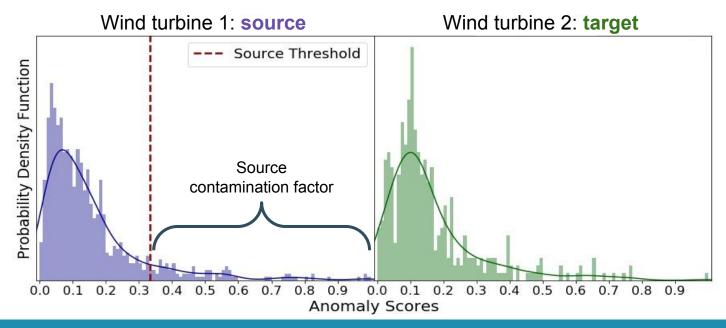
Compute the distribution of the anomaly scores of the two separate domains:





#### Step 2. Estimate the source predictive threshold

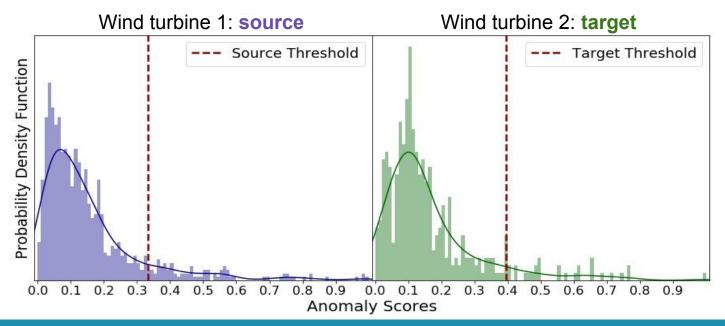
Set a **threshold** on the source anomaly scores such that the percentage of scores greater than the threshold **equals the source contamination factor**:





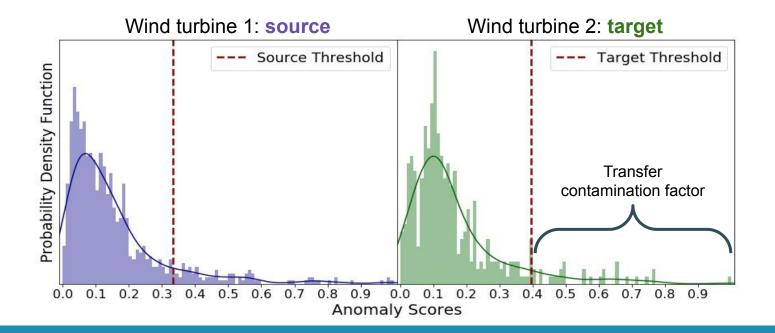
#### Step 3. Transfer the source predictive threshold

Find the threshold on the target scores such that the **shape of the score distributions** below the thresholds are as **similar** as possible:

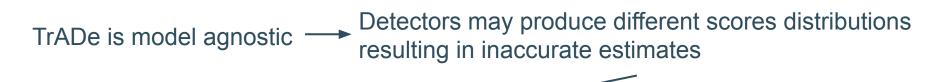


#### Step 4. Derive the target contamination factor

Derive the **target contamination factor** from threshold as in step 2:



Weighing an ensemble of detectors yields better results



#### Ensemble:

- 1. Estimate the target contamination using multiple detectors;
- 2. Compute the KL divergence between the source and target anomaly scores distribution;
- 3. Take a weighted average, where the weights depend on the KL values.

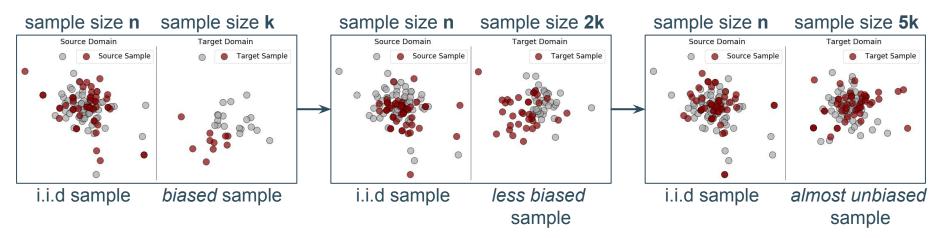


#### **Theoretical Convergence Analysis**



### Key assumptions: target gets unbiased & same shape to the limit

1. The sample from the source domain is representative of its distribution, while the target sample reduces its potential bias when collecting new data;



2. The source and target normal distributions share the same shape to the limit.

#### Two theoretical results

- 1. The estimated target predictive threshold converges to its real value;
  - $\rightarrow$  The transfer is theoretically well defined and sound (Step 3);

- 2. The target contamination factor estimator is unbiased;
  - → Deriving the contamination factor from the predictive threshold returns the expected value (Step 2 and Step 4).

### **Extensive empirical evaluation**

- ★ Q1. Does TrADe accurately estimate the target contamination factor?
- ★ Q2. Does a more accurate estimate improve the model performance?
- $\star$  Q3. Is an ensemble of detectors more accurate than single detectors?
- $\star$  Q4. How does TrADe perform when varying the source contamination factor?



#### **Experimental setup**

Three groups of datasets:

12 proprietary water consumption, 2 wind turbines, 9 public IoT datasets;

Setup:

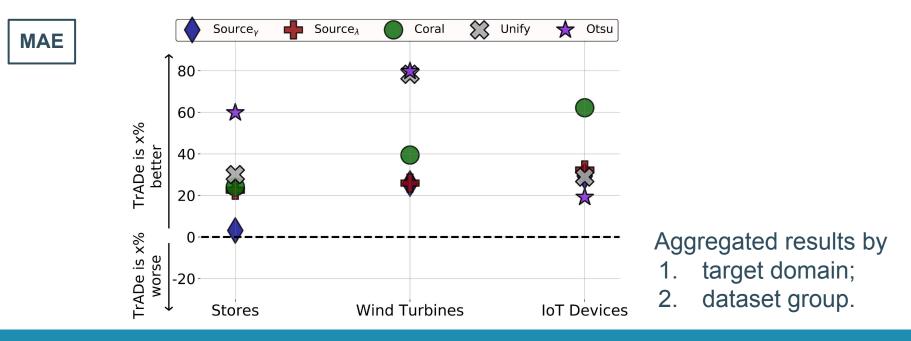
- > Pick a source-target pair (in total 12x11 + 2x1 + 9x8 = 206 pairs);
- Estimate the target contamination factor and use it to make predictions;

**Baselines**:

- > **Source**<sub>y</sub> and **Source**<sub> $\lambda$ </sub> use the source values as target estimates;
- > **Coral** aligns the two domains and uses Source<sub>x</sub>;
- > Unify and Otsu estimate the contamination factor using only the target domain.

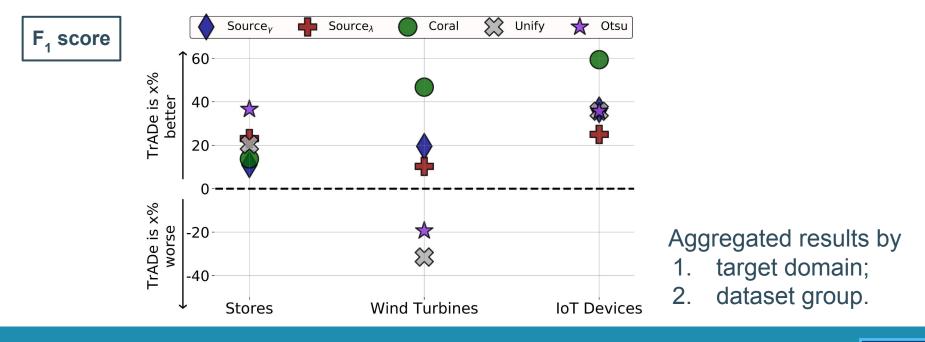
### Q1. Does TrADe accurately estimate the target contamination factor?

Average Improvement of the MAE using TrADe against the baselines:

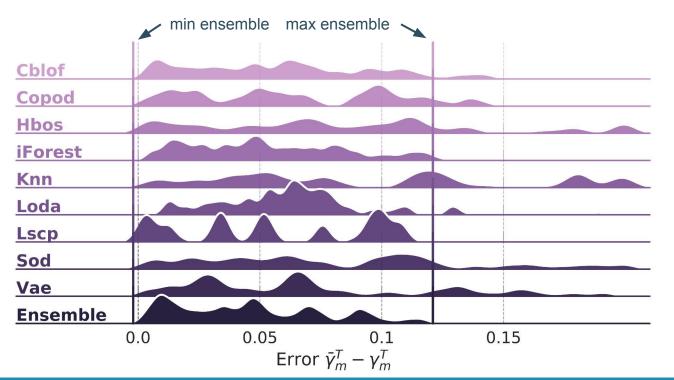


### Q2. Does a more accurate contamination factor improve the model performance?

Average Improvement of the *F*<sup>1</sup> score using **TrADe** against the baselines:



### Q3. How does the ensemble perform with respect to each individual variant?

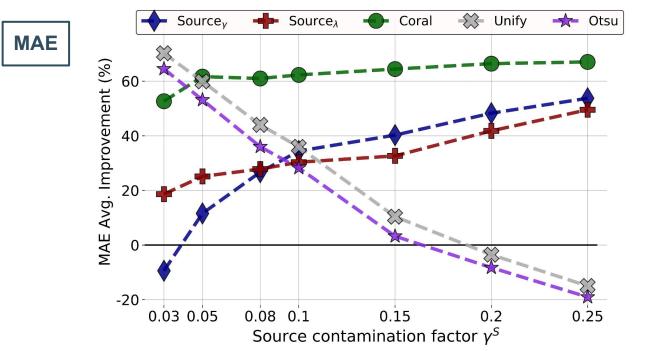


Each TrADe's variant is named with its anomaly detector

The ensemble shows little variance and limited errors



### Q4. How does TrADe perform when varying the source contamination factor?



We aggregate results by target domain and we use only IoT data.

Target contamination fixed to 0.01.



#### In conclusion, we

- Introduce the problem of transferring the contamination factor;
- > Propose TrADe, a novel 4-step approach for such a transfer;
- Analyze theoretically TrADe's behaviour to the limit;
- > Perform an extensive empirical analysis using benchmark and real world data.

Code and experiments are available online: *https://github.com/Lorenzo-Perini/TransferContamination* 





# Contact us name.surname@kuleuven.be

Lorenzo Perini, Vincent Vercruyssen, Jesse Davis AAAI 2022

https://people.cs.kuleuven.be/~lorenzo.perini/

@LorenzoPerini95

