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Abstract

Anomaly detection methods aim to identify examples that do not follow the expected
behavior. For various reasons, anomaly detection is typically tackled by using
unsupervised approaches that assign real-valued anomaly scores based on various
heuristics. For instance, one can assume that anomalies fall in low-density regions and
compute the negative log-likelihood as anomaly score.

Because anomaly scores are often hard to interpret, practitioners need class labels
(i.e., anomaly yes/no) for decision-making. That is, one needs to set a proper decision
threshold to flag high-score examples as anomalies. However, finding a threshold
requires having access to labeled examples for evaluating the quality of the predicted
class labels, which is unfeasible in unsupervised anomaly detection. Moreover, existing
literature has focused mainly on measuring the quality of the anomaly scores through
ranking-based metrics (e.g., AUROC), which largely ignores the problem of how to
derive class predictions. Here, we fill this gap by proposing three novel approaches to
transform scores into class predictions.

Given a detector’s class predictions, a natural question is: how likely does a prediction
change when learning a detector on training data that is subject to slight perturbation?
Because unsupervised detectors cannot refine the decision boundary by leveraging
labeled examples, they tend to have high uncertainty in predictions. That is, slight
changes in the training set often would yield a different decision boundary which, in
turn, would flip some test examples’ class prediction. This uncertainty makes it hard to
deploy a detector in real-world applications as it deteriorates the practitioner’s trust in
its crucial predictions. Because existing literature largely ignores this problem, we fill
this gap by proposing an unsupervised approach to quantify a detector’s uncertainty in
predictions.

While quantifying uncertainty is essential, practitioners also need a reliable way to
assess whether they can trust a detector’s prediction. That is, one needs to answer
the question: is the detector’s uncertainty low enough to rely on its prediction? This
falls into the field of Learning with Rejection, where the model is allowed to abstain
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(i.e., defer the decision, or “reject” it) when its uncertainty is too high, such that
practitioners can trust its output whenever it makes a prediction. Traditionally, learning
with rejection approaches rely on evaluating the risk (or, equivalently, the cost) of
making mispredictions to design the rejection mechanism, which requires labeled
examples. Because no unsupervised method for rejection exists, we fill this gap and
propose the first unsupervised anomaly detection algorithm with rejection.



Beknopte samenvatting

Methoden voor anomaliedetectie hebben als doel voorbeelden te identificeren die niet
voldoen aan het verwachte gedrag. Om verschillende redenen wordt anomaliedetectie
typisch aangepakt door gebruik te maken van ongesuperviseerde methodes die
reële anomalie-scores toewijzen op basis van verschillende heuristieken. Men kan
bijvoorbeeld aannemen dat anomalieën zich bevinden in gebieden met een lage
dichtheid en de negatieve log-likelihood berekenen als anomalie-score.

Omdat anomalie-scores vaak moeilijk te interpreteren zijn, hebben eindgebruikers
classificatielabels nodig (d.w.z. anomalie ja/nee) voor besluitvorming. Men moet een
geschikte beslissingsdrempel instellen om voorbeelden met hoge scores als anomalieën
aan te duiden. Het vinden van zo’n drempel vereist echter toegang tot gelabelde
voorbeelden om de kwaliteit van de voorspelde classificatielabels te evalueren, wat
onhaalbaar is bij ongesuperviseerde anomaliedetectie. Bovendien heeft de bestaande
literatuur zich voornamelijk gericht op het meten van de kwaliteit van de anomalie-
scores via op rangschikking gebaseerde metrieken (bijv. AUROC), wat grotendeels het
probleem negeert van hoe classificatievoorspellingen moeten worden afgeleid. Hier
vullen we deze lacune aan door drie nieuwe methodes voor te stellen om scores om te
zetten in classificatievoorspellingen.

Een natuurlijke vraag bij de classificatievoorspellingen van een detector is: hoe
waarschijnlijk is het dat een voorspelling verandert wanneer een detector wordt
getraind op gegevens die onderhevig zijn aan een lichte verstoring? Omdat
ongesuperviseerde detectoren de beslissingsgrens niet kunnen verfijnen door gebruik
te maken van gelabelde voorbeelden, hebben ze dikwijls een hoge onzekerheid in
voorspellingen. Kleine veranderingen in de trainingsset zouden dus vaak een andere
beslissingsgrens opleveren, wat op zijn beurt de classificatievoorspelling van sommige
testvoorbeelden zou omkeren. Deze onzekerheid maakt het moeilijk om een detector
in praktijksituaties in te zetten, omdat het het vertrouwen van de eindgebruiker in de
cruciale voorspellingen aantast. Omdat de bestaande literatuur dit probleem grotendeels
negeert, vullen we deze lacune aan door een ongesuperviseerde methode te introduceren
om de onzekerheid van een detector in voorspellingen te kwantificeren.
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Hoewel het kwantificeren van onzekerheid essentieel is, hebben eindgebruikers ook
een betrouwbare manier nodig om te beoordelen of ze op een voorspelling van een
detector kunnen vertrouwen. Men moet dus de vraag beantwoorden: is de onzekerheid
van de detector laag genoeg om op zijn voorspelling te vertrouwen? Dit valt onder
het gebied van Leren met Afwijzing, waarbij het model wordt toegestaan om zich te
onthouden van een beslissing (dat wil zeggen, het uitstellen of “afwijzen”) wanneer de
onzekerheid te hoog is, zodat eindgebruikers de output kunnen vertrouwen wanneer de
detector een voorspelling doet. Traditioneel vertrouwen methodes met afwijzing op het
evalueren van het risico (of equivalent, de kosten) van verkeerde voorspellingen om
het afwijzingsmechanisme te ontwerpen, wat gelabelde voorbeelden vereist. Omdat er
geen ongesuperviseerde methode voor afwijzing bestaat, vullen we deze lacune aan en
stellen we het eerste ongesuperviseerde anomaliedetectiealgoritme met afwijzing voor.
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Chapter 1

Introduction

One anomaly a year, not good. Two
anomalies in a year, people start
talking. Three anomalies in a year,
better start looking for a new job.

Mike Noskov

The goal of machine learning is to develop algorithms and mathematical models that
enable machines to learn from data in order to make predictions or decisions without
being explicitly programmed to perform a specific task [119, 260]. In other words,
machine learning aims to build systems that learn how to operate a specific task through
data, rather than relying on a person hand-crafting a program to handle each case.
Importantly, machine learning models usually improve their performance on the task as
they are exposed to larger datasets (i.e., more data), as they can learn the input-output
relationship characterizing a broader range of scenarios.

One common machine learning task is to train a model to distinguish between two
options (i.e., classes), which is known as binary classification task [137]. The classes
are typically named as positive and negative. Traditionally, training such a binary
classifier requires first collecting a labeled dataset, which is a set of independent
and identically distributed examples representing the expected patterns within each
class. By leveraging the labeled examples, a fully supervised binary classifier learns to
distinguish between the two classes with the goal of making accurate predictions on
future examples (i.e., ones where the label is unknown).

However, in some cases, one rather wants to monitor a system’s normal condition
and detect whenever a collected example deviates from the common behavior. This
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field is called anomaly detection and aims at identifying instances that differ from the
expected data patterns, often referred to as anomalies [36, 107]. Normal examples are
usually referred to as the negative class, while anomalies compose the positive class.
Consider the simple scenario shown in Table 1.1, where a fictional company monitors
the daily production of energy from a wind turbine. For each day, they also monitor
the average daily temperature, humidity, wind speed, and solar radiation. A natural
question is: does the production of energy over the days follow our expectations?
With a deeper inspection, one immediately realizes that, on the sixth day, the produced
energy was much lower than it should have with such high wind speed: an anomalous
event must have happened to the turbine, arguably due to the low temperature and
high humidity [245]. Anomaly detection applications span a broad range of other use
cases, such as detecting the alteration of proprietary user data [118], water leaks in
stores [188], breakdowns in gas turbines [256], or failures in petroleum extraction [159].
Usually, anomalies are associated with a cost such as a monetary cost (e.g., maintenance,
paying for fraudulent purchases) or a societal cost such as environmental damages (e.g.,
dispersion of petroleum or gas). Hence, detecting anomalies in a timely manner is an
important problem.

Table 1.1: An example of an anomalous event over the data collected from a wind
turbine. Columns indicate values averaged over a day. The sixth day is anomalous
because the energy produced is much lower than expected under seemingly favorable
weather conditions.

Day Temperature
(C°)

Humidity
(%)

Wind Speed
(m s−1)

Solar Radiation
(W m−2)

Energy Produced
(kW h)

1 14 25 0.6 200 55
2 12 55 2.8 180 95
3 11 62 6.1 220 160
4 12 35 4.5 190 145
5 7 30 0.8 170 52

6 (Anomaly) 2 85 5.2 180 57
7 10 48 4.6 185 143

Although anomaly detection is a binary classification task, unfortunately, flagging
anomalies is a challenging task because anomaly detection diverges from the traditional,
supervised binary classification setting in four key ways (A1 - A4).

A1. Anomaly detection is mostly an unsupervised or a weakly supervised task.
Collecting labels, especially for anomalous events, is a hard task for three reasons.
First, the expert may not be able to recognize the anomalies. For instance, if Table 1.1
contained 100+ sensors (i.e., columns), how would you process whether a day has
an anomalous production of energy? Second, labeling the anomalies may be a time-
consuming process. In fact, due to their rarity, the process of labeling anomalies
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necessitates the inspection of a huge number of examples (e.g., 1000+) to encounter an
anomaly. Third, anomalies may have never occurred so far in the systems, especially
for newly deployed systems (e.g., a new operative wind turbine). In this case, it is
impractical and undesirable to voluntarily generate some critical event just to observe
anomalous behaviors in the data (i.e., for testing purposes) because this can pose safety
and ethical concerns [197].

A2. Anomaly detection is an imbalanced task. Because anomalies are rare events,
a dataset often contains a vast majority of normal examples. That is, the dataset is
strongly imbalanced (e.g., 99.99% of collected examples are normal). Because of the
lack of supervision (A1), a machine learning model may not be able to capture the rare
anomalous deviations in the data. That is, the model may learn to always predict the
normal class, which defeats the point of anomaly detection. Thus, designing anomaly
detection models requires accounting for such class bias. As a result, one often needs to
make assumptions about the expected type of anomalous behavior to bias the learning
algorithm toward detecting such examples [83].

A3. Anomalous examples are not representative of the anomaly class. The
anomalies observed within a dataset may not comprehensively represent all potential
anomalous cases that can occur. For instance, a wind turbine’s blades can be damaged
by sandstorms, thunderbolts, or even some icing events, which would have a different
impact on the collected data. Reasonably, one almost never gathers all possible anomaly
types, especially if you consider that anomalies may change and evolve over time,
based on natural changes in the monitored systems or environments [69].

A4. Labeled anomalies may not help in learning an accurate anomaly detector.
Anomalies may be a unique one-off event. For instance, wind turbines positioned in
a coastal area can experience an unusually powerful and sudden storm with extreme
wind conditions, which, in combination with saltwater exposure and, perhaps, a
manufacturing defect, may lead a specific blade to a crack that never repeats again in
the future. Learning an anomaly detector using one-off anomalies in the training set
may have two negative implications. First, the model may overfit the unique anomalies
in the training set and fail to detect more general anomalies that could reasonably occur
in different scenarios. Second, the model may develop a bias towards the specific
conditions of such anomalies, which potentially leads to mispredictions when faced
with variations in the operational conditions [217].

To overcome these challenges, traditional anomaly detection models operate in an
unsupervised (or weakly supervised) setting by assigning real-valued anomaly scores
to examples based on various heuristics, where higher scores indicate more anomalous
examples. Roughly speaking, they exploit specific intuitions on what constitutes an
anomaly to quantify how anomalous an example is. For instance, one can intuitively
assume that anomalies fall far from the normals and use the distance to the k-th nearest
neighbor as anomaly scores. Similarly, one can claim that anomalies fall in low-density
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regions and compute the negative log-likelihood through a density estimator as anomaly
scores. Overall, these anomaly scores serve as the basis for distinguishing anomalies
from normal examples.

The literature on anomaly detection has focused on unsupervised and weakly supervised
algorithms, but largely ignored three practical challenges in their application:

Operational anomaly detection. Practitioners cannot make decisions based solely
on the anomaly scores because they are not interpretable. For instance, given a
test example with anomaly score equal to 2, what decision can you make? Most
literature evaluates algorithms using ranking-based performance metrics (e.g.,
AUROC) that only need anomaly scores and test labels to measure the model
performance. Unfortunately, practitioners lack good means for converting the
scores to hard predictions for correct decision-making. Thus, they often resort
to using training labels for such goal [220, 252, 263]. This largely defeats the
point of using such unsupervised methods.

The practical question is deciding how to set a decision threshold to convert
higher scores to anomaly labels and lower scores to normal labels. One approach
is to set the decision threshold such that the proportion of predicted anomalies
equals the dataset’s contamination factor, i.e. the real expected proportion of
anomalies. However, existing literature assumes the contamination factor to be
known (e.g., from domain knowledge) [92, 253, 70], which is almost never the
case in real-world applications. Hence, there is a need for proper contamination
factor estimation methods to convert anomaly scores into hard predictions.

Uncertainty-aware anomaly detection. In several real-world applications, practi-
tioners refuse to use anomaly detection models because they do not know how
reliable the detector’s predictions are. Unsupervised detectors tend to have high
uncertainty in predictions because they cannot refine their decision boundary
using labeled training examples. That is, slight changes in the training set often
result in some (test) prediction being flipped. A natural question arises: would
you make decisions based on a detector’s predictions that may flip if trained
on a slightly different training set? Alas, this point is largely ignored by most
literature, which mainly targets designing novel anomaly detectors instead of
quantifying the uncertainty of the existing ones.

For fully supervised binary classification tasks, the common approach to
measuring the model’s reliability involves calibrating the output scores, i.e.
transforming them into accurate probabilities [216, 171, 134, 135, 133].
Unfortunately, this requires having access to labeled data, which is impractical in
the anomaly detection context where labels are scarce [129, 163]. Consequently,
there is a crucial need for alternative metrics that effectively capture the
uncertainty in predictions made by unsupervised anomaly detectors.
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Reliable anomaly detection. While quantifying model uncertainty is crucial, its
practical application for decision-making remains unclear. After all, given a
model’s uncertainty value for a prediction, how can a practitioner decide what
action to take? Because the anomaly detector’s predictions are usually crucial,
practitioners tend to avoid the risk of making wrong decisions by not trusting
the model even when it shows minimal uncertainty. Alas, this defeats the whole
point of even designing anomaly detection algorithms.

There is an urgent need to increase the user trust in the detection algorithm.
One option is to allow the model to tell when its prediction is unreliable such
that the user can manually intervene and make the correct decision. That is,
if the model makes a prediction it means that it is likely that such prediction
is correct. Alternatively, the model abstains and defers the decision to the
user. By paying the cost of limiting the number of predictions and the model’s
effective usage, practitioners can now trust the model’s predictions. The field that
investigates this option is called Learning to Reject [40, 105, 49]. Traditionally,
Learning to Reject methods require having access to labels to (1) measure the
risk of the model making mispredictions and (2) decide when such risk is large
enough to allow the model to abstain [156, 37]. Unfortunately, unsupervised
anomaly detection has no access to labeled data, and no existing literature designs
unsupervised methods for learning to reject.

1.1 Dissertation Statement

This dissertation investigates unexplored areas of anomaly detection by addressing the
aforementioned gaps in the literature. Specifically, we aim to answer the following
three questions:

Q1. How can we estimate the contamination factor using weak or no domain
knowledge?

Q2. Can we measure the anomaly detector’s uncertainty in predictions without relying
on any labeled data?

Q3. Can we leverage such an uncertainty estimation method to improve the reliability
of an anomaly detector?

1.2 Contributions

This dissertation addresses its statement through five main contributions.
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1.2.1 Contribution 1: Class prior estimation in active positive
and unlabeled learning

Sometimes one can introduce the human in the loop and query some specific examples’
labels to improve the detection of anomalies. However, experts may not understand the
concept of anomaly and, therefore, they may be unable to provide a correct anomaly
label when asked to. Here, we assume an active learning setting where the user can only
provide the label for normal examples. That is, when the example looks anomalous,
the user does not give any label.

This weakly supervised setting falls into the field of Positive and Unlabeled (PU)
Learning, which is a weakly supervised setting where only labels belonging to one
class (named positive) are given, and the unlabeled examples may belong to either class.
PU Learning methods include class prior estimation, i.e. estimating the proportion
of normals, which is complementary to the contamination factor. However, most PU
Learning methods assume that labels are selected completely at random (SCAR), which
does not hold in our setting.

Therefore, we propose CAPe, the first algorithm to estimate the class prior (i.e.,
1− contamination factor) by correctly handling the problem of labels acquired via
active learning. Additionally, we provide an extensive theoretical analysis of CAPe’s
convergence to the true class prior when increasing the dataset’s size. Practically, we
investigate two scenarios: i) the user is a perfect oracle and only provides the normal
label to true normals, and ii) the user may make mistakes, i.e. incorrectly labeling some
anomalies or not providing the label for true normals. In both scenarios, we perform an
extensive experimental analysis.

This contribution is based on the following peer-reviewed conference publication [185]:

Perini, L., Vercruyssen, V., and Davis, J. Class prior estimation in active positive
and unlabeled learning. In Proceedings of the 29th International Joint Conference on
Artificial Intelligence and the 17th Pacific Rim International Conference on Artificial
Intelligence (IJCAI-PRICAI 2020).

We describe our approach in detail in Chapter 3. The Cython code is available at
https://github.com/Lorenzo-Perini/Active_PU_Learning.

1.2.2 Contribution 2: Transferring the contamination factor
between anomaly detection domains by shape similarity

Real-world anomaly detection often involves monitoring groups of related entities,
such as machines, windmill farms, or retail stores. These entities share some common
behaviors but also have unique characteristics that impact the data collected. Estimating

https://github.com/Lorenzo-Perini/Active_PU_Learning
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the contamination factor individually for each entity by collecting labels, especially
when monitoring hundreds of them, is impractical. Existing literature investigates the
possibility of transferring anomaly information from one entity (the source domain)
to similar entities (the target domain), reducing the need for extensive data labeling.
However, none of the existing works transfers the contamination factor.

We propose TrADe, an algorithm for transferring contamination factor from an
unlabeled source domain (where it is given) to an unlabeled target domain. The method
assumes that if the anomaly score distributions of normal examples are similarly shaped
in both domains, the target’s contamination factor can be derived from the source’s
known one. Additionally, we perform an extensive theoretical analysis of TrADe and
prove that the estimated target contamination factor converges to its true value under
mild assumptions. Finally, we perform an extensive experimental analysis.

This contribution is based on the following peer-reviewed conference publication [188]:

Perini, L., Vercruyssen, V., and Davis, J. Transferring the Contamination Factor
between Anomaly Detection Domains by Shape Similarity. In Proceedings of the
Thirty-Six AAAI Conference on Artificial Intelligence (AAAI 2022).

We describe our approach in detail in Chapter 4. The Python code is available at
https://github.com/Lorenzo-Perini/TransferContamination.

1.2.3 Contribution 3: Estimating the contamination factor’s
distribution in unsupervised anomaly detection

Employing inaccurate estimates of the contamination factor (or, equivalently, of the
decision threshold) when converting the anomaly scores into predictions deteriorates
the performance of the anomaly detector, which decreases user trust in the detection
system. If we could pair such an estimate with an indicator of uncertainty, it could
enable us to make more informed decisions. While there are existing anomaly detection
methods that employ Bayesian Learning to output distributions, none of them targets
the transformation of anomaly scores into predictions.

Here, we propose γGMM, the first algorithm for estimating the contamination factor’s
(posterior) distribution in unlabeled anomaly detection setups. In this case, we do not
require any domain knowledge. We experimentally show that γGMM can output a
well-calibrated posterior distribution, and that employing its mean as a deterministic
point estimate for the contamination factor results in a better thresholding scheme when
compared to adapted baselines.

This contribution is based on the following peer-reviewed conference publication [181]:

https://github.com/Lorenzo-Perini/TransferContamination
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Perini, L., Bürkner, P.-C., and Klami, A. Estimating the contamination factor’s
distribution in unsupervised anomaly detection. In Proceedings of the Fortieth
International Conference on Machine Learning (ICML 2023).

We describe our approach in detail in Chapter 5. The Python code is available at
https://github.com/Lorenzo-Perini/GammaGMM. Moreover, γGMM is fully
integrated into PyThresh (link: https://github.com/KulikDM/pythresh).

1.2.4 Contribution 4: A theoretical framework for assessing
an anomaly detector’s example-wise stability

Setting the predictive threshold according to the given contamination factor may result
in unreliable predictions because small perturbations of the training set would yield
(potentially large) variations in the predictive threshold. That is, slightly changing the
training anomaly scores yields a different decision threshold being picked, which in
turn flips some test predictions.

We investigate this direction and introduce ExCeeD, the first stability measure of
the detector’s example-wise uncertainty in predictions. Strictly speaking, ExCeeD
quantifies how likely a detector’s test prediction would flip if we could slightly change
the training set. Additionally, we perform a theoretical analysis of the convergence
behavior of ExCeeD, and an experimental analysis to assess whether it captures such
uncertainty better than some adapted baselines.

This contribution is based on the following peer-reviewed conference publication [187]:

Perini, L., Vercruyssen, V., and Davis, J. Quantifying the confidence of anomaly
detectors in their example-wise predictions. In Proceedings of the Joint European
Conference on Machine Learning and Knowledge Discovery in Databases (ECML-
PKDD 2020).

We describe our approach in detail in Chapter 6. The Python code is available at
https://github.com/Lorenzo-Perini/Confidence_AD. Moreover, ExCeeD is
fully integrated into PyOD [258].

1.2.5 Contribution 5: Unsupervised Anomaly Detection with
Rejection

High uncertainty (or equivalently, low confidence) estimates mean that the anomaly
detector is likely to make mispredictions. A way to take advantage of such a scenario
is to include a reject option in the anomaly detector, which means that the model can
abstain from making a prediction when its uncertainty is too high. Traditional methods

https://github.com/Lorenzo-Perini/GammaGMM
https://github.com/KulikDM/pythresh
https://github.com/Lorenzo-Perini/Confidence_AD
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for Learning to Reject consist of setting an appropriate threshold on a confidence metric
and rejecting the example whenever the model prediction has lower confidence. This
has the clear effect of increasing user trust, as the model only predicts whenever the
prediction has a high chance of being correct.

Unfortunately, existing learning to reject approaches require fully labeled data, which
is not available in most anomaly detection settings. Thus, we fill this gap by proposing
RejEx, an approach to perform rejection for anomaly detection in a completely
unsupervised manner.

We first develop an unsupervised confidence metric based on ExCeeD’s stability values.
By theoretically analyzing its properties, we develop an unsupervised method to
threshold such a confidence metric. Finally, our method comes with strong guarantees,
which we carefully investigate and theoretically prove. A large experimental analysis
confirms that using our rejection approach improves the detector’s performance.

This contribution is based on the following peer-reviewed conference publication [182]:

Perini, L., and Davis, J. Unsupervised Anomaly Detection with Rejection. In
Proceedings of the Thirty-Seven Conference on Neural Information Processing
Systems (NeurIPS 2023).

We describe our approach in detail in Chapter 7. The Python code is available at
https://github.com/Lorenzo-Perini/RejEx.

1.3 Additional publications not included in this
dissertation.

This dissertation focuses on a subset of my list of publications. Specifically, it contains
only the publications that fit within the context of developing operational, uncertainty-
aware, and reliable anomaly detection methods. This section summarizes the additional
contributions that do not fit within this context.

Learning from Positive and Unlabeled Multi-Instance Bags in Anomaly
Detection

In the multi-instance learning (MIL) setting, instances are grouped into bags, and labels
are assigned at the bag level, not for individual instances. A bag is labeled positive if it
contains at least one positive instance, while negative bag labels mean all instances in
the bag are negative. MIL data is common in contexts like anomaly detection, where
labeling is rare and costly. In real-world anomaly detection, only positive labels are

https://github.com/Lorenzo-Perini/RejEx
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often available, fitting into positive-unlabeled (PU) learning. Despite its utility, there is
no dedicated work on PU learning in the multi-instance setting for anomaly detection.
We propose a novel method for learning from positive and unlabeled bags in anomaly
detection, using an autoencoder as the underlying detector. The method modifies
the autoencoder’s objective function, introducing a new loss to learn from positive
and unlabeled bags. The proposed method is theoretically analyzed and empirically
evaluated on 30 datasets, outperforming multiple baselines adapted for this setting.

This contribution has been published at a peer-reviewed conference [186]:

Perini, L., Vercruyssen, V. and Davis, J. Learning from Positive and Unlabeled Multi-
Instance Bags in Anomaly Detection. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (SIGKDD 2023).

Machine Learning with a Reject Option: A survey

Machine learning models always make a prediction, even when it is likely to be
inaccurate. This behavior should be avoided in many decision support applications,
where mistakes can have severe consequences. Albeit already studied in 1970, machine
learning with rejection recently gained interest. This machine learning subfield enables
machine learning models to abstain from making a prediction when likely to make a
mistake.

This survey aims to provide an overview on machine learning with rejection. We
introduce the conditions leading to two types of rejection, ambiguity and novelty
rejection, which we carefully formalize. Moreover, we review and categorize strategies
to evaluate a model’s predictive and rejective quality. Additionally, we define the
existing architectures for models with rejection and describe the standard techniques
for learning such models. Finally, we provide examples of relevant application domains
and show how machine learning with rejection relates to other machine learning
research areas.

This contribution has been published at a peer-reviewed journal [105]:

Hendrickx, K.∗, Perini, L.∗, Van der Plas, D., Meert, W. and Davis, J. Machine
learning with a reject option: A survey. Machine Learning, 2024.

Semi-Supervised Isolation Forest for Anomaly Detection

Unsupervised anomaly detectors often rely on exploiting intuitions about what
constitutes anomalous behavior to overcome the lack of labeled examples. However,
such models are limited by the validity of their intuition because these are not
universally true but strongly depend on the application task and given dataset. Thus, one
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often tries to improve the detectors’ performance by using a semi-supervised approach
that exploits a few labeled instances to fix the heuristic assumptions. This work
proposes a novel semi-supervised tree ensemble based anomaly detection framework,
where an isolation tree is learned by leveraging limited labeled examples together
with a majority of unlabeled examples. We compare our proposed approach to several
baselines and show that it performs comparably well to the best state-of-the-art neural
networks on 6 real-world and 14 benchmark datasets.

This contribution has been published at a peer-reviewed conference [223]:

Stradiotti, L., Perini, L., and Davis, J. Semi-Supervised Isolation Forest for Anomaly
Detection. In Proceedings of the 2024 SIAM International Conference on Data
Mining (SDM 2024).

Detecting Evasion Attacks in Deployed Tree Ensembles

Tree ensembles are widely used and powerful models but are vulnerable to evasion
attacks, where adversaries craft examples to elicit mispredictions. This undermines
model performance and user trust. While existing approaches focus on verifying
ensemble robustness during learning, we propose an approach to detect adversarial
examples post-deployment. We explore this concept, already investigated for neural
networks, in the context of tree ensembles. Our key insight is to analyze the output
configuration of an unseen example, which corresponds to the set of final leaves reached
when processed by each tree in the ensemble. By enumerating the leaves, we posit that
adversarial examples obtain unusual output configurations. Following this insight, we
assess whether an unseen example is adversarial by measuring the distance between its
output configuration and the nearest configuration in a reference set. Experimentally,
we show that our approach outperforms existing adversarial detection methods when
used on three different tree ensemble learners.

This contribution has been published at a peer-reviewed conference [54]:

Devos, L., Perini, L., Meert, W. and Davis, J. Detecting Evasion Attacks in Deployed
Tree Ensembles. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases (ECML-PKDD 2023).

Semi-Supervised Learning from Active Noisy Soft Labels for Anomaly
Detection

Anomaly detection often employs a semi-supervised approach with active learning
to strategically acquire a small number of labels. However, because anomalies are
not always well-understood events, the user may be uncertain about how to label
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certain instances. To address this, we suggest allowing users to provide soft labels
(probabilistic labels) representing their belief that a queried example is anomalous.
These labels are naturally noisy due to people’s inability to provide well-calibrated
probability instances. To cope with this, we propose using a Gaussian Process to learn
from actively acquired soft labels in anomaly detection, leveraging information from
nearby examples to mitigate noise. We experimentally evaluate our approach on 21
datasets and show that it outperforms several baselines on the majority of experiments.

This contribution has been published at a peer-reviewed conference [158]:

Martens, T., Perini, L. and Davis, J. Semi-supervised Learning from Active Noisy
Soft Labels for Anomaly Detection. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases (ECML-PKDD 2023).

Multi-domain Active Learning for Semi-supervised Anomaly Detection

Active learning aims to reduce the need for extensive annotated data by smartly
acquiring labels during the learning process. While current approaches focus on a single
dataset, practical scenarios often involve learning models from multiple datasets, each
requiring a separate model. Our study addresses the underexplored multi-domain active
learning setting, adopting a multi-armed bandits perspective. The proposed Active
Learning Bandits (Alba) method employs bandit strategies to explore and exploit the
usefulness of querying labels from different datasets. Evaluation on a retail dataset
benchmark in a real-world anomalous resource usage detection case demonstrates
Alba’s superiority over existing active learning strategies, highlighting the limitations
of standard approaches in multi-domain settings.

This contribution has been published at a peer-reviewed conference [236]:

Vercruyssen, V., Perini, L., Meert, W. and Davis, J. Multi-domain Active Learning
for Semi-supervised Anomaly Detection. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases (ECML-PKDD 2022).

The effect of hyperparameter tuning on the comparative evaluation of
unsupervised anomaly detection methods

Researchers have proposed various anomaly detection algorithms, but their performance
depends heavily on user-defined hyperparameters. However, there is no consensus
in the literature on how to set these hyperparameters when comparing algorithms.
Common approaches, such as using "default" or optimally tuned settings, are criticized
for being either too pessimistic or unrealistically optimistic. To address this, we
advocate for tuning hyperparameters on a per-dataset basis using a small validation set.
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This approach balances the low cost of labeled data acquisition with fair, sound, and
reproducible algorithm comparisons. We establish a theoretical lower bound on the
required validation set size and support our proposal with experimental results on 16
datasets.

This contribution has been published at a peer-reviewed workshop [220]:

Soenen, J., VanWolputte, E., Perini, L., Vercruyssen, V., Meert, W., Davis, J. and
Blockeel, H.. The effect of hyperparameter tuning on the comparative evaluation of
unsupervised anomaly detection methods. In Proceedings of the KDD’21 Workshop
on Outlier Detection and Description (OOD 2021 Workshop at SIGKDD 2021).

A Ranking Stability Measure for Quantifying the Robustness of Anomaly
Detection Methods

Naturally occurring variations in the data impact the learning of the anomaly detector,
and, thus, which examples it will predict to be anomalous. Ideally, an anomaly
detection method should be robust to such small changes in the data. Hence, we
introduce a ranking stability measure that quantifies the robustness of any anomaly
detector’s predictions by looking at how consistently it ranks examples in terms of their
anomalousness. Our experiments investigate the performance of this stability measure
under different data perturbation schemes. In addition, we show how the stability
measure can complement traditional anomaly detection performance measures, such as
the area under the ROC curve or average precision, to quantify the behavior of different
anomaly detection methods.

This contribution has been published at a peer-reviewed workshop [183]:

Perini, L., Galvin, C., Vercruyssen, V. A Ranking Stability Measure for Quantifying
the Robustness of Anomaly Detection Methods. In Proceedings of the 2nd Workshop
on Evaluation and Experimental Design in Data Mining and Machine Learning
(EDML 2020 Workshop at ECML-PKDD 2020).

How to Allocate your Label Budget? Choosing between Active Learning
and Learning to Reject in Anomaly Detection

Anomaly detection aims to identify instances deviating from expected behavior, and
is often tackled from an unsupervised perspective. However, the lack of labels makes
the anomaly detector have high uncertainty in some regions, which usually results in
poor predictive performance or low user trust in the predictions. One can reduce such
uncertainty by collecting specific labels using Active Learning (AL), which targets
examples close to the detector’s decision boundary. Alternatively, one can increase the
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user trust by allowing the detector to abstain from making highly uncertain predictions,
which is called Learning to Reject (LR). Although both AL and LR need labels, they
work with different types of labels: AL seeks strategic labels, which are evidently
biased, while LR requires i.i.d. labels to evaluate the detector’s performance and set
the rejection threshold. Because one usually has a unique label budget, deciding how
to optimally allocate it is challenging. Here, we propose a reward-based strategy that,
given a budget of labels, decides in multiple rounds whether to use the budget to collect
AL labels or LR labels. The strategy measures the expected gain when allocating the
budget to either side. We evaluate our approach on 18 benchmark datasets and compare
it to some baselines.

This contribution has been accepted (yet not officially published) at the peer-reviewed
workshop [184]:

Perini, L., Giannuzzi, D. and Davis, J. How to Allocate your Label Budget? Choosing
between Active Learning and Learning to Reject in Anomaly Detection. In 1st AAAI
Workshop on Uncertainty Reasoning and Quantification in Decision Making. arXiv
preprint arXiv:2301.02909.



Chapter 2

Background

This chapter provides the necessary background information for the contributions of
the dissertation. Specifically, we initially describe the canonical anomaly detection
problem (Section 2.1), the existing models (Section 2.2), the common evaluation
metrics (Section 2.3), and finally move to the related fields that are central to this
dissertation (Section 2.4).

2.1 The Anomaly Detection Problem

Anomaly detection aims at identifying examples that could be indicative of errors, fraud,
faults, or other negative, unusual, and unexpected events. These examples, referred to
as anomalies, show a behavior that is distinct from the expected or normal patterns. The
goal of an anomaly detection system is to automatically detect and flag these anomalies
within a dataset, which is valuable in several applications. Section 2.1.1 illustrates
some of these applications.

The key aspects of anomaly detection include defining what constitutes an anomalous
behavior, which usually depends on the specific dataset and application domain.
Anomalies can be seen from statistical, machine learning, analytic, or geospatial
perspectives, among others. However, one commonly categorizes anomalies according
to their geometrical properties (e.g., how do the feature values of anomalies relate to
the normal ones?). This allows researchers to provide a complete taxonomy of anomaly
types, which we discuss in Section 2.1.2.

15
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Traditionally, one employs machine learning techniques to detect anomalies. Designing
an anomaly detector requires first formalizing the anomaly detection problem, namely
the concept of a dataset, the anomaly detection task, and the traditional framework. We
formalize these three aspects in Section 2.1.3.

2.1.1 Real-World Applications of Anomaly Detection

Anomaly detection has several real-world applications:

Industry. Anomaly detection is central in the industrial field, due to its capacity to
detect machine breakdowns [196] or defects in production [25]. Industrial systems
like wind turbines [245], power plants [117], high-temperature energy systems [261],
and mechanical equipment [144], are exposed to tremendous stress on a daily basis.
Unexpected damage within these systems is associated with high monetary costs as
well as possible loss of reputation for the industrial brand [35]. Because such damages
are rare events, detecting them can be formulated as an anomaly detection problem.
For this task, several papers propose promising data-driven methods for detecting early
industrial damage [256, 159].

Finance. Anomaly detection has a significant application in the financial field,
especially in the detection and prevention of fraudulent activities [6]. Financial
fraud is a persistent challenge, and rapid response is crucial for minimizing its
impact. For example, anomaly detection helps identify credit card fraud through
irregular transactions, such as unusually high payments or atypical purchases [28, 203].
Additionally, it plays a role in monitoring mobile phone billing for unusual usage
patterns [179, 120], automating the identification of potentially fraudulent insurance
claims [238, 170], and quickly detecting abnormal market behaviors to prevent market
fraud and maintain its integrity [5, 84]. These applications are essential for safeguarding
financial security and protecting both consumers and businesses.

Medicine. Anomaly detection has vast applications in the medical field, as it enables
the quick identification of irregularities in patient data, which can be the key to early
disease detection [230, 96]. For example, by examining medical imaging data such
as MRIs, anomaly detection can pinpoint anomalous brain regions, which might be
indicative of Alzheimer’s disease [191, 18]. In critical care units, it plays a vital role
in monitoring patients’ vital signs and alerting doctors to deviations from normal
parameters in real-time, allowing for immediate interventions [34]. Moreover, anomaly
detection assists in managing chronic conditions by continuously tracking patients’
health metrics and ensuring timely adjustments to treatment plans [218, 61]. The
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integration of anomaly detection into medical practice not only improves patient
care but also contributes to more accurate diagnoses, better treatment outcomes, and
ultimately, the overall well-being of individuals.

2.1.2 Defining and Characterizing the Anomalies

Feature 1
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Figure 2.1: Simple 2D toy dataset with 2 clusters of normal examples and 3 types of
anomalies: o1 is a point anomaly, o2 a contextual anomaly and O3 a collective anomaly.

The definition of anomalies in academic papers varies depending on the specific field
of research and the context of the study. These definitions often revolve around the
concepts of outliers, noise, novelties, and more [36]. Although these terms have
similar interpretations, they do capture different aspects of the anomaly. For instance,
outliers are examples that significantly deviate from the majority of the data. They
are observations that are rare or unusual compared to the rest of the data. Outliers are
commonly used in fields like finance, where they can represent unusual market behavior,
and healthcare, where they might indicate abnormal patient data. Alternatively, in data
analysis, noise refers to random variations or errors in data that can distort patterns and
relationships. Noisy examples contain irregular and unpredictable values that do not
carry meaningful information. Thus, filtering out such noise is crucial for developing
an accurate analysis. Finally, novelties are examples that significantly differ from
the majority but may not necessarily be erroneous. In some cases, novelties can be
of large value, in particular when they show emerging trends, highlight previously
undiscovered events or unexplored opportunities. For instance, records of patients with
rare pathologies may be of large value for improving a disease detection model.

In this dissertation, we refer to the concept of anomaly as a more general category that
includes all previous definitions. Specifically, we define the anomaly as:

An anomaly is an example that does not conform to the expected behavior.
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Despite being general, relying on this definition allows us to work on a more abstract
level and defer the specific application to the practitioners. From the theoretical
perspective, anomalies can also be broadly classified into three types based on
their geometric properties: point anomalies, contextual anomalies, and collective
anomalies [35]:

• Point Anomalies. Point anomalies, also known as individual anomalies, are
single examples that deviate significantly from the normal expected behavior.
These anomalies do not depend on any specific context and can be detected
by analyzing the example in isolation. For instance, in an industrial setting, a
point anomaly could be a sudden and unexpected spike in temperature within
a chemical reactor during a chemical manufacturing process. This temperature
increase may occur due to a temporary sensor malfunction or an external factor
like a blocked cooling system [165].

• Contextual Anomalies. Contextual anomalies, also known as conditional
anomalies, are examples that are considered anomalous within a specific context
or condition. These anomalies are identified by taking into account both
contextual features (such as time, location, or other relevant conditions) and
behavioral features (patterns, behaviors, or attributes) of the data. For instance,
if a stock in a stable and well-established company suddenly shows extremely
high volatility and rapid price changes without any significant news or events in
the broader market, this could be considered a contextual anomaly [165].

• Collective Anomalies. Collective anomalies, also known as group anomalies,
occur when a collection or group of examples show anomalous characteristics
if considered together, while individual examples within the group may appear
normal. These anomalies are detected by analyzing the relationships and
interactions among examples within the group. For instance, the unexplained
increase in hospital admissions in a specific geographic region during a particular
time frame can be a collective anomaly [97].

Figure 2.1 shows a visualization of how the three types of anomalies would look on a
2d toy dataset. The point anomaly (o1) has feature values that are far different from
any normals (in each feature). The contextual anomaly (o2) is close to one cluster of
normals and only the combination of both features makes it anomalous. Finally, the
collective anomaly (O3) is a cluster of anomalies that, if taken individually, would
not be considered anomalous (due to the other close examples in the group) but, if
considered as a unique cluster, their values are far away from any other example.
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2.1.3 Defining the Anomaly Detection Problem

Let (Ω,F ,P) be a probability space, where Ω is the sample space, F represents a
σ-algebra over Ω and P is a probability measure. Let X : Ω → Rd, Y : Ω → {0, 1}
be, respectively, a d-dimensional random variable representing a feature vector and a
binary random variable representing the true class label. Canonically, Y = 1 indicates
the anomaly (positive) class, while Y = 0 refers to the normal (negative) class.1

Definition 1 (Domain). A domain D B p(X,Y) is defined as a joint probability
distribution over the example-label space Rd × {0, 1}.

In practice, one often only sees a dataset, i.e. an i.i.d. sample drawn from the domain:

Definition 2 (Dataset). A labeled dataset is a set of N independent and identically
distributed (i.i.d) examples D = {(x1, y1), . . . , (xN , yN)} drawn from the joint distribution
p(X,Y).

Because most of this dissertation refers to the unlabeled scenario, an unlabeled dataset
is just a collection of i.i.d. examples drawn from p(X), as we have no access to their
label.

Remark (Unlabeled Dataset). We refer to an unlabeled dataset with the same symbol
D = {x1, . . . , xN} and clearly state whether it is labeled (i.e., (x, y) ∈ D) or unlabeled
(i.e., x ∈ D).

The goal of anomaly detection is to learn a detector that maps examples to their class
label (anomaly or normal).

Definition 3 (The anomaly detection task). Given a dataset D, the anomaly detection
task consists of finding a function that maps an example x to its label y.

The unsupervised task is usually treated in two steps: assigning anomaly scores, and
transforming the scores into class labels.

Assigning anomaly scores. First, designing an anomaly detection model often
refers to finding a measurable map f : Rd → R that maps an example x to a real-
valued anomaly score, denoted by s = f (x). Such a map f is usually chosen
from the hypothesis spaceH , which is the space of all possible functions satisfying
the underlying hypotheses. Essentially, an anomaly score s reflects the degree of
anomalousness of the example x: the higher the score the more anomalous the example.

1When we deal with Positive and Unlabeled (PU) Learning techniques, we swap the class labels and refer
to the normal class as the positive class. This is further motivated in Chapter 3.
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Transforming the scores into class labels. Second, one aims at setting a decision
threshold λ ∈ R over the anomaly scores to convert them to hard predictions. In most of
the unsupervised (or weakly supervised) problems, setting a correct decision threshold
λ is challenging because one cannot set up an optimization problem to tune λ by
maximizing the detector’s performance. One common approach is to exploit the
contamination factor γ = P(Y = 1), which measures the expected proportion of
anomalies. One can set the decision threshold λ such that γ × N scores are ≥ λ. This
guarantees that the number of the detector’s predicted anomalies matches the expected
number of true anomalies. Such a thresholding approach results optimal in all cases
when the detector’s anomaly scores for anomalies are higher than for normals.

As a result, a predicted label ŷ is assigned to an example x as follows:

ŷ =

1 (anomaly) if f (x) ≥ λ;
0 (normal) if f (x) < λ.

Remarks on the notation. In this dissertation, lowercase letters refer to examples
while uppercase letters refer to random variables. For instance, we denote by S = f (X)
the anomaly score random variable and by Ŷ the predicted class label random variable.
Moreover, whenever it may be ambiguous, the hat symbol ·̂ refers to an estimated
quantity or variable. Finally, we highlight that P indicates a probability measure, while
p refers either to a random variable’s distribution (if used with an uppercase random
variable) or to the probability density function (if used with a lowercase example).

2.2 Anomaly Detection Paradigms

The choice of how to design an anomaly detection algorithm depends on two aspects:
the level of supervision, and the nature of the anomalies being targeted. That is, one has
first to decide between a supervised (i.e., the dataset is fully labeled), a semi-supervised
(i.e., the dataset is partially labeled), and an unsupervised (i.e., the dataset has no labels)
approach. Then, the choice of the algorithm depends on the underlying intuition of
what constitutes an anomalous behavior. In the following text, we briefly discuss some
existing anomaly detection models. This discussion is not exhaustive and only focuses
on the concepts relevant to this dissertation, which mainly investigates an unsupervised
setting.

2.2.1 Supervised Anomaly Detection

Fully-supervised anomaly detection is often impractical due to the high cost and
difficulty of collecting large-scale labeled data that includes both normal and anomaly
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samples. Arguably, there are no specialized supervised anomaly detection algorithms,
and people often use existing classifiers for this purpose such as Random Forest and
Neural Networks [4, 233]. However, such models often struggle to detect the unknown
ones, as they are not specifically designed for anomaly detection. This is particularly
problematic when ground truth labels fail to capture all types of anomalies, limiting
the scope of these methods to known anomaly types.

Additionally, supervised approaches face difficulties in achieving satisfactory perfor-
mance levels due to the challenges associated with addressing class imbalance [45, 86].
Although some loss functions for neural network models have been devised to tackle
class imbalance issues (e.g., focal loss [148]), they are often not tailored specifically
for anomaly detection tasks.

2.2.2 Semi-Supervised Anomaly Detection

Semi-supervised anomaly detection methods make efficient use of partial labels while
maintaining the ability to detect previously unseen anomalies [116, 239]. Instead of
relying only on labeled data, these approaches combine unsupervised models with
available labels to improve anomaly detection without treating it as a traditional
imbalanced classification problem. Roughly speaking, semi-supervised anomaly
detectors can be distinguished into four categories based on how they use labels:

1. Incomplete supervision-based semi-supervised anomaly detectors assume all
training instances to be normal and learn their distribution to flag out-of-distribution
instances as anomalies [39, 263]. For example, LUNAR [85] uses a Graph Neural
Network to detect anomalies through a message-passing algorithm. These models
can be adapted to use anomaly labels by removing all the labeled anomalies from the
training set.

2. Propagation-based semi-supervised anomaly detectors assume that similar/close
instances share the same label. Thus, a test instance’s prediction depends on how
similar/close it is to the given training labeled instances [52]. For example, SSDO [237]
and SSkNNo [234] use an unsupervised anomaly detector to initially assign the anomaly
score to an instance, and then they update such a score by computing a distance-based
correction depending on the neighbors’ labels.

3. Loss-based semi-supervised anomaly detectors build an ad-hoc loss function that
includes both labeled and unlabeled instances to distinguish between normals and
anomalies [259, 73]. For example, SSAD [86] and DeepSAD [206] learn a hypersphere
that encapsulates the unlabeled and normally labeled training instances while leaving
out the anomalies. Alternatively, Repen [177] uses triplet networks to learn expressive
feature representations of the instances, while DevNet [178] leverages a limited number
of labeled anomalies to perform end-to-end anomaly score learning.
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4. Tree-based semi-supervised anomaly detectors learn the patterns of normal (and
potentially anomalous) instances by creating a sequence of splits that isolate the
anomalies from the normals. The key assumption is that there exist some features
where anomalies can be easily isolated by a split. For instance, Hif [157] uses Isolation
Forest [151] to randomly split the instance space, and then it leverages the anomalous
labels to measure the proximity to anomalies.

2.2.3 Unsupervised Anomaly Detection

Unsupervised anomaly detection models operate without the need for labeled examples
and represent a flexible approach for identifying anomalies across various domains.
Because they do not rely on ground truth labels, unsupervised detectors are particularly
suitable for scenarios where labeled data is unavailable. To overcome the lack of
supervision, unsupervised anomaly detectors exploit data-driven heuristic intuitions on
what constitutes an anomaly to assign the anomaly scores.

Normally, unsupervised anomaly detection methods can be categorized according to
the nature of the heuristics they use to assign the anomaly scores.2 Most existing
unsupervised methods are implemented in the Python library PyOD [258] and such
implementation has been used throughout this dissertation. Here, we provide a simple
categorization.

Distance-Based Unsupervised Anomaly Detection

Assumption. Normal examples occur in dense neighborhoods, while anomalies occur
far from their closest neighbors.

Distance-based anomaly detection relies on measuring the distance or similarity
between examples, where the higher the distance the more anomalous the example
is. Different measures can be used based on the data type: for continuous attributes,
Euclidean distance is popular, while for categorical attributes, matching coefficients or
more complex measures can be employed [36].

In the literature, existing methods differ in where they measure the distance from. Here
we provide a list of the most common approaches:

2Some existing methods, like Locally Selective Combination of Parallel Outlier Ensembles (Lscp) [257],
employ ensembles of unsupervised models to account for multiple heuristics and capture different types of
anomalies.
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K-Nearest Neighbor Outlier Detector(kNNO). kNNO [10] assigns the anomaly score
for an example x as the distance from its k-th nearest neighbor x′:

fkNNO(x) = d(x, x′) = dk(x),

where d is usually the Euclidean distance.

Local Outlier Factor (LOF). LOF [29] assigns the anomaly score for an example x as
the deviation between its local reachability density (Lrd) and the Lrd of its neighbors,
where the Lrd is estimated using the distance to the k-th nearest neighbor dk:

fLOF(x) =

∑
x′∈NNk(x)

Lrdk(x′)
Lrdk(x)

|NNk(x)|
, with Lrdk(x) =

|NNk(x)|∑
x′∈NNk(x)

max{dk(x′), d(x, x′)}

where NNk is the set of k nearest neighbors of x.

Clustering Based Local Outlier Factor (CBLOF). CBLOF [101] is an extension of
LOF that accounts for the cluster structure of the data. It assigns the anomaly score for
an example x based on the deviation from the density of its local cluster.

One-Class Support Vector Machines (OCSVM). OCSVM [89] defines a hypersphere
(or hyperplane) around the majority of examples and assigns anomaly scores based on
the examples’ distance to the center of this hypersphere.

Isolation-based anomaly detection using nearest-neighbor ensembles (INNE).
INNE [13] uses training subsamples to partition the space into regions and assigns
anomaly scores by computing the local distance within the partition.

Statistical Unsupervised Anomaly Detection

Assumption. Normal examples occur in high-probability regions, while anomalies
occur in the low-probability regions.

Statistical anomaly detection involves learning a probabilistic model, often ad-hoc
for normal behavior, and measuring how likely an example is generated by such a
model. Examples with a low probability of being generated by the learned model
are flagged as anomalies. Specifically, an example’s anomaly score relates usually to
either its negative log probability density, if the model targets the example density,
or the tail probability, if the model targets the cumulative density function. These
techniques include both parametric, where the underlying distribution is assumed, and
nonparametric methods, which do not rely on such assumption.

In the literature, existing methods differ in how they estimate the density or compute
the tail probability. Here we provide a list of the most common approaches:



24 BACKGROUND

Kernel Density Estimation for Unsupervised Outlier Detection (KDE). KDE [140]
is a parametric method that assumes the examples follow a multivariate Gaussian
distribution N(µ,Σ) and learns the density p(x) through a traditional kernel density
estimator

fKDE(x) B
1√

(2π)d |Σ̂|

exp
(
−

1
2

(x − µ̂)⊺Σ̂−1(x − µ̂)
)

where µ̂ and Σ̂ are the estimated mean and covariance matrix, |Σ̂| refers to the
determinant of Σ̂, and ⊺ indicates the transposition.

Outlier detection based on Gaussian Mixture Model (GMM). GMM [205, 4] with
K components is an extension of KDE that assumes the examples follow a mixture of
K Gaussian distributions and learns the density p(x) as

fGMM(x) B
K∑

k=1

πk
1√

(2π)d |Σ̂k |

exp
(
−

1
2

(x − µ̂k)⊺Σ̂−1
k (x − µ̂k)

)

where πk are the mixing proportions such that
∑K

k=1 πk = 1. For finite mixtures, one
typically has a Dirichlet prior over {π1, . . . , πK}, but Dirichlet Process (DP) priors allow
treating also the number of components as unknown [87].

Histogram-Based Outlier Detection (HBOS). HBOS [82] is a nonparametric method
that assumes feature independence to calculate the degree of anomalousness by
measuring the example density building histograms.

Lightweight Online Detector of Anomalies (LODA). LODA extends HBOS [189] by
using a collection of one-dimensional histograms, where each histogram is constructed
on a randomly generated projected space.

Copula Based Outlier Detector (COPOD). COPOD [145] is a nonparametric method
that estimates tail probabilities using empirical copula.

Empirical-Cumulative-distribution-based Outlier Detection (ECOD). ECOD [146]
estimates tail probabilities by computing the empirical cumulative distribution per
dimension and uses the skewness of these empirical distributions to aggregate them.

Spectral Unsupervised Anomaly Detection

Assumption. Examples can be embedded into a lower dimensional subspace in which
normal examples and anomalies appear significantly different.

Spectral anomaly detection involves mapping the data to a sub-dimensional space
to easily identify the anomalies. Such sub-spaces can be either randomly selected
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or learned. Each method in this category employs a different heuristic to select the
sub-space and measure the anomalousness of the examples. Here we provide a list of
the most common approaches:

Isolation Forest (IF) and Deep Isolation Forest (DIF). IF [151] and DIF [247]
isolate observations by randomly selecting a feature and then randomly selecting a split
value between the maximum and minimum values of the selected feature. IF selects
the original features while DIF creates an embedded representation of the examples
to achieve non-linear splits. Both methods assign anomaly scores using an inverse
function of the number of splits needed to isolate an example, where fewer splits
indicate more anomalous examples. For instance,

fIF(x) B 2−
E[h∗ (x)]
ϕ(N) ,

where h∗ is the height of the tree to isolate x, E is the expectation over the different
trees, and ϕ(N) is a normalizing constant value that only depends on the number of
training examples N.

Autoencoder (Ae) and Variational Autoencoder (Vae). Ae [39] and Vae [123] are
neural network-based methods that first map examples to a lower dimensional space
(Ae deterministically, Vae probabilistically), and then reconstruct them as accurately
as possible. The goal is to find a lower dimensional representation that still enables
accurate reconstruction of the input. Because the network is trained to minimize
the reconstruction error on the training set, the higher the reconstruction error for a
test example, the more anomalous it is. Thus, they assign the anomaly scores as the
reconstruction error. For instance,

fAe(x) = ∥x − aθ(x)∥2 ,

where ∥ · ∥ is the Euclidean norm, aθ(x) is the reconstructed input by the autoencoder
with θ as parameters (i.e., the network weights).

Subspace Outlier Detection (SOD). SOD [130] selects the sub-dimensional space for
each example by considering the features that significantly deviate from the neighbors
in the subspace. It assigns anomaly scores using a distance-based approach to determine
how much the object deviates from the neighbors in the subspace.

Principal Component Analysis (PCA) and Kernel Principal Component Analysis
(KPCA) Outlier Detector. PCA [215] and KPCA [106] are, respectively, linear and
non-linear dimensionality reduction methods using Singular Value Decomposition of
the examples (PCA) or a kernel representation of the examples (KPCA) to project
them to a lower dimensional space. In this procedure, the covariance matrix of the
examples can be decomposed to orthogonal vectors, called eigenvectors, associated
with eigenvalues. The eigenvectors with high eigenvalues capture most of the variance
in the examples. Anomaly scores are computed using the sum of the projected distance
of examples on all eigenvectors.



26 BACKGROUND

2.3 Evaluation Metrics for Anomaly Detection

This Section briefly discusses two categories of metrics: supervised metrics, which
are concerned with evaluating how well an anomaly detector performs in making
predictions on labeled examples, and unsupervised metrics, which assess the quality
of the discovered patterns, clusters, or representations of the data (e.g., stability,
robustness).

2.3.1 Supervised Evaluation Metrics

Quantitative evaluation metrics play a crucial role in assessing the performance of
anomaly detection models. Among the most commonly used metrics are the confusion
matrix, accuracy, F1 score, and Area Under the Curve (AUC).

Confusion Matrix. The confusion matrix provides a comprehensive view of
model performance, breaking down results into true positives tp (anomalies correctly
identified), true negatives tn (normals correctly identified), false positives f p (normals
misclassified as anomalies), and false negatives f n (anomalies misclassified as normals).
Despite giving an excellent high-level overview, the confusion matrix does not allow
for an immediate comparison between models. In contrast, single-valued evaluation
metrics are more useful for determining how well an anomaly detector performs.

Accuracy. The accuracy is the traditional metric used in binary classification tasks
and is computed as the ratio of correct predictions to total predictions

Accuracy =
tp + tn

tp + tn + f p + f n
.

However, the accuracy may not be suitable for imbalanced datasets where anomalies
are rare. In fact, a naive anomaly detector that always predicts normal (regardless of
the example given as input) would obtain on expectation an accuracy that is as high as
1-γ, where γ is the (low) training contamination factor.

F1 Score. The F1 score is particularly well-suited for imbalance classification tasks
as it is the harmonic mean of precision and recall:

F1 score =
2 × Precision × Recall

Precision + Recall
=

tp
tp + 1

2 ( f p + f n)

where Precision = tp
tp+ f p and Recall = tp

tp+ f n . The F1 score is a more appropriate metric
for anomaly detection due to its ability to balance between precision (i.e., the accuracy
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of positive predictions) and recall (i.e., the true positive rate) [70]. Because the task of
anomaly detection is to identify rare and potentially critical events, both the accurate
detection of anomalies (high precision) and the capture of most relevant anomalies
(high recall) are crucial.

Area Under the Curve Metrics. The Area Under the Curve (AUC) is a significant
evaluation metric often used in anomaly detection. Two common AUC measures are
the Area Under the Receiver Operating Characteristic (AUROC) [95, 94] and the Area
Under the Precision-Recall Curve (AUPRC) [50, 125], also referred to as Average
Precision (AP).

The AUROC measures the area under the Receiver Operating Characteristic (ROC)
curve, which is a plot of recall (y-axis) against the false positive rate (x-axis) when
varying a decision threshold over the class probabilities or the anomaly scores [161].
Formally, it is computed as

AUROC =
∫ 1

0
Recall

(
FPR−1(x)

)
dx

where FPR−1 is the inverse-image of the false positive rate. Intuitively, the AUROC
represents the probability that the model ranks a randomly chosen true anomaly higher
than a randomly chosen true normal.

The AUPRC measures the area under the Precision-Recall (PR) curve, which is a
plot of recall (x-axis) against precision (y-axis) [68]. The AUPRC quantifies the
model’s ability to trade off precision for recall as the decision threshold over the class
probabilities or the model’s scores varies. Formally, it is computed as

AUPRC =
∫ 1

0
Precision (Recall ) dRecall.

PR curves and AUPRC are often considered more informative than ROC curves
(AUROC) in the presence of class imbalance, as precision and recall provide a more
meaningful assessment of a model’s performance in situations where the number
of anomalies is much smaller than the number of normals [176]. However, Flach
and Kull [68] show that PR curves do not satisfy relevant desired properties such as
allowing linear interpolation, having a universal baseline, a convex Pareto-front, and
an interpretable area. Also, they propose the Precision-Recall-Gain Curve [68] which
extends the PR curve to satisfy all previous properties.

Additional remarks on F1 score vs AUC metrics. Existing anomaly detection
literature focuses mostly on the use of AUC (either AUROC or AUPRC) metrics
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as the primary evaluation criteria. This preference stems from the fact that AUC
metrics only necessitate the model to provide anomaly scores or probabilities for the
evaluation, making them particularly advantageous. By using AUC, one effectively
bypasses the challenges associated with setting specific decision thresholds on the
anomaly scores to predict class labels. The process of thresholding can be challenging,
especially in scenarios where the setting is weakly or unsupervised, lacking class labels.
However, it’s worth noting that this dissertation puts significant emphasis on the task of
thresholding anomaly scores. Consequently, when evaluating a detector’s performance
at specific thresholds, we frequently employ the F1 score, which helps us assess how
effectively the model balances precision and recall, making it a key metric for our
research.

2.3.2 Unsupervised Metrics for Anomaly Detection

There exist several unsupervised metrics (i.e., they can be computed without labels) for
quantifying detector quality [153]. Roughly speaking, these metrics can be categorized
into stand-alone evaluations, which only rely on a single detector’s output, and
consensus-based, which leverage the agreement between multiple anomaly detectors.
In the following, we provide a short description of five existing metrics and refer to
the original papers for full details. Note that we employ these metrics in Chapter 7 for
hyperparameter tuning (i.e., the rejection threshold) in an unsupervised setting.

Stand-Alone Unsupervised Evaluation Metrics. The initial index proposed for
unsupervised outlier detection evaluation is the Internal, Relative Evaluation of Outlier
Solutions (IREOS) [155], which initially was designed for binary predictions and later
was extended to handle anomaly scores [154]. The underlying idea is that anomalies are
more easily separated (discriminated) from other training examples than the normals.
Thus, a “good” detector effectively identifies highly separable examples, which can be
assessed through a nonlinear SVM. Specifically, the IREOS score for a detector fi is

IREOS( fi) =
1
nη

nη∑
l=1

∑N
j=1 ϕSVM(x j, ηl)ω j∑N

j=1 ω j

whereω j ∈ [0, 1] is the transformed anomaly score fi(x j) into a probability, ϕSVM(x j, ηl)
is the separability of the example x j estimated by the SVM with kernel bandwidth ηl,
and nη is the number of constant bandwidth values used.
Alternatively, Goix [81] proposed the Mass-Volume (Mv) and the Excess-Mass (Em)
metrics to measure the quality of the anomaly scores. The main idea is that good-quality
score distributions have anomalies in the tail. They assume the lower the score the more
anomalous, which is the reverse of what we assume but can be easily obtained (e.g.,
scaling them by taking the inverse or the negative value). Intuitively, the Mv measures
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the clusteredness of inlier scores, or, equivalently, the compactness of high-density
level sets as:

Mv( fi, α) = inf
u≥0
|smax − u| s.t.

1
N

N∑
j=1

1 fi(x j)≥u(x j) ≥ α

which computes, for a given α ∈ (0, 1), the length of the interval between the maximum
training score smax and the score at the (1 − α)-th quantile of the empirical score
distribution. Similarly, the Em metric identifies as small a u value as possible such that
the scores larger than or equal to u are as clustered as possible (to minimize the length
of the interval):

Em( fi, t) = sup
u≥0

 1
N

N∑
j=1

1 fi(x j)≥u(x j) − t|smax − u|

 for t > 0,

where t is set to some value in [0,Em−1( fi, 0.9)].

Consensus-based Unsupervised Evaluation Metrics. The first consensus-
based approach, Unsupervised Disentanglement Ranking (Udr), operates under the
hypothesis that a robust detector will yield consistent results across different random
choices of hyperparameters (HP), unlike a detector that is highly sensitive to the
hyperparameter setting [57, 149]. Udr involves four steps:

(i) Train M anomaly detectors fi with E different hyperparameter configurations,
for a total of M × E models;

(ii) For each algorithm fi, randomly sample (without replacement) Ẽ ≤ E
pairs ( fi,HPi′) sharing the same algorithm fi and different hyperparameter
configurations HPi′ ;

(iii) Perform Ẽ pairwise comparisons between fi and the sampled models measuring
their similarity;

(iv) Aggregate the pairwise comparisons Udrii′ taking the median Udri =

mediani′Udrii′ , and choose the detector fi with the largest Udri.

Essentially, Udr selects the detector with stable results across different HP settings.
Finally, the Unsupervised Outlier Model Ensembling (Ens) measures the quality of
the scores through an iterative scheme designed for unsupervised model selection for
ensembles [199, 262]. The key idea is to infer reliable “pseudo ground truth” anomaly
scores by aggregating the output of a carefully selected subset of trustworthy detectors.
Ens iterates over two steps:
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(i) Create the pseudo ground truth by aggregating the anomaly scores of the
ensemble using weights proportional to the trustworthiness of the models;

(ii) Estimate the trustworthiness of each model based on the ranking similarity
between its anomaly scores and the pseudo ground truth.

2.4 Anomaly Detection and Related Fields

Anomaly Detection is a task naturally related to several machine learning fields.

For instance, one often starts with a fully unlabeled dataset and then acquires a few
labels by querying an expert. However, experts may not be able to understand the
anomalies and often they end up providing labels only for the normal class. This setting
falls into the field of Positive and Unlabeled (PU) Learning, where a learner has access
only to positive labeled examples and to unlabeled examples (Section 2.4.1).

Additionally, several real-world applications require monitoring multiple assets (e.g.,
a fleet of wind turbines positioned in different places around the world). Collecting
labels for each of the assets is practically infeasible. Therefore, one often resorts to
Transfer Learning techniques to transfer the limited domain knowledge given for one
dataset to the remaining datasets (Section 2.4.2).

Because anomaly scores are hard to interpret, transforming them into accurate
probabilities is crucial in many applications. For instance, if probabilities are
accurate, risk-based decisions can be made using techniques from decision-making.
Therefore, often one tends to calibrate the model’s scores to resemble interpretable
probabilities. The set of techniques used for such a goal falls into the field of Calibration
(Section 2.4.3).

Given an uncertainty measure (e.g., a calibration method), assessing whether a model
is confident enough to make the prediction is an important task. In fact, utilizing
the model only when it is likely to make correct predictions has the clear effect of
increasing its reliability. This falls into the area of Learning with Rejection, where the
model is allowed to abstain from predicting when the risk of misprediction is too high
(Section 2.4.4).

2.4.1 Positive and Unlabeled (PU) Learning

The goal of Positive and Unlabeled (PU) Learning is the same as a general binary
classification, namely to train a model to distinguish between positive and negative
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examples based on their features [21, 56, 62]. However, during the learning phase,
only a subset of positive examples is labeled, while none of the negative examples
are labeled. That is, the labeled examples must belong to the positive class, while the
unlabeled examples can belong to either class.

In PU learning, the canonical example pair (x, y) is extended to be a triple (x, y, o),
where o ∈ {0, 1} indicates if the example’s label has been observed (o = 1) or not
(o = 0). Therefore, the canonical probability measure P is naturally extended over
possible triples drawn from Rd×{0, 1}×{0, 1}. Moreover, we indicate by O : Ω→ {0, 1}
the related random variable. With this notation, the key assumption of PU Learning
(i.e. the positivity of labels) can be expressed as P(Y = 1|O = 1) = 1.

Labeling Mechanism. The labeled positive examples are selected using an
underlying probabilistic mechanism, where each example’s label has a probability
e(x) = P(O = 1|Y = 1, X = x) to be observed, which is called propensity score. Given
the propensity scores, one can link the distribution of the labeled class to the distribution
of the positive class as

p(x|O = 1) =
e(x)
ν

p(x|Y = 1),

where ν = P(O = 1|Y = 1) ∈ [0, 1] is the label frequency. That is, if one can estimate
the propensity score and the label frequency, the true class density can be obtained from
the labeled examples using the inverse formula. Moreover, the class prior P(Y = 1) can
be estimated in a straightforward fashion as P(O = 1)/ν [21].

Labeling Mechanism Assumptions. Designing PU Learning methods requires
making assumptions on the labeling mechanism, which indicates how the positive
labels are selected.

1. Selected Completely At Random (SCAR). Traditionally, it is assumed that
(positive) labels are selected completely at random (SCAR), meaning that the
probability of an example being labeled depends only on its true label [19, 42, 38].
This implies that the propensity score is a constant value equal to the label frequency,
e(x) = ν. Under the SCAR assumption, the probability of an example being labeled is
proportional to its probability of being positive

P(O = 1|x) = νP(Y = 1|x).

This enables the use of non-traditional classifiers, which are classifiers simply trained
to predict O using as positive class O = 1 and as negative class O = 0.

2. Selected At Random (SAR). More recent work relaxes the SCAR assumption by
assuming that the labels are selected at random (SAR). This means that the probability
of an example being labeled depends not only on its true label but also on its features [22,
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20, 121]. The class prior of a dataset is now computed through the propensity score,
where an example’s propensity score e(x) can be estimated using insights on the
actual labeling mechanism. For instance, in Chapter 3 we estimate the propensity
score assuming that the examples are only labeled when they are queried by an active
learning strategy [79].

3. Probabilistic Gap. This labeling mechanism assumes that the positive examples
that overlap with the negative class distribution are less likely to be labeled [99, 78].
That is,

e(x) = ϕ(P(Y = 1|x) − P(Y = 0|x)) with
d
dt
ϕ(t) < 0.

The main difficulty relies on defining or estimating the function ϕ. One option is to use
the observed probabilistic gap P(O = 1|x)−P(O = 0|x), which, under mild assumptions,
is related to the true gap [99].

2.4.2 Transfer Learning

The main assumption of this dissertation is that anomaly detection tasks benefit
from introducing domain knowledge into the setting, such as labels or the exact
contamination factor’s value. However, if the number of monitored assets is large, how
can an expert be able to provide the necessary information for all the assets?

We look into the transfer learning scenario, which aims at transferring information
from one domain, called source domain, to another domain, called target domain [242,
173]. Formally, given a source domainDS , a target domainDT , and their datasets DS

and DT the goal is to improve the target domain model by leveraging the knowledge
embedded in the source domain.

In our context, we focus on a specific form of transfer learning, namely domain
adaptation, which assumes that the example and label space are identical between the
source and target domains [64]. Although the spaces are identical, each domain is
characterized by a different probability distribution: DS is represented by p(XS ,YS ),
andDT by p(XT ,YT ). A natural way to improve the model performance on the target
domain is to align the two distributions, such that one can combine the two (aligned)
datasets and learn a model using more data. The joint distributions of the domains can
mismatch on three aspects, which define the three common settings (plus combination)
for domain adaptation [128, 127].

1. Prior Shift. Prior shift refers to a modification in the class prior distributions
between the source and target domains [115, 131]. Decomposing the joint distributions
through the chain rule, we have p(X,Y) = p(X|Y)p(Y). The prior shift setting assumes:

p(YS ) , p(YT ) and p(XS |YS ) = p(XT |YT ).
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As a practical example, consider a medical diagnosis system trained on data from a
hospital with low disease prevalence (source domain). When deployed to a different
hospital with a higher prevalence (target domain), a prior shift occurs in the class
prior distribution. This shift necessitates adaptation to ensure the model generalizes
effectively in the new environment.

2. Covariate Shift. Covariate shift refers to a modification in the example
distribution between the source and target domain [225, 224]. Decomposing the
joint distribution using the chain rule in the other way, we have p(X,Y) = p(Y |X)p(X).
The covariate shift setting assumes:

p(XS ) , p(XT ) and p(YS |XS ) = p(YT |XT ).

As an illustrative example, consider a manufacturing process where a machine learning
model is employed for quality control. If the characteristics of raw materials or the
production environment change over time, it can lead to a covariate shift, affecting the
model’s performance. Adapting the model to these shifts ensures reliable and accurate
quality assessments.

3. Concept Shift. Concept shift refers to a modification in the class-conditional
distributions between the source and target domains [7, 243]. Breaking down the joint
distribution as for the covariate shift, the concept shifts setting assumes:

p(YS |XS ) , p(YT |XT ) and p(XS ) = p(XT ).

For instance, consider an online fraud detection system trained on transaction data
from a global e-commerce platform. When deployed to a new country, where user
behavior exhibits different patterns due to cultural practices, a concept shift occurs. If
the model is not adapted, it may struggle to identify fraud accurately in the new context,
highlighting the importance of addressing concept shift.

Combined shift. Each shift type (prior, covariate, concept) involves a change in
joint probability distributions between domains. However, in certain scenarios, multiple
shifts may happen together, posing a more challenging domain adaptation problem.
Successful transfer learning in such cases requires additional information, such as
label data in both domains to fix a concept shift or other assumptions about domain
structures.
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2.4.3 Calibration

Calibration in binary classification tasks involves aligning predicted probabilities
with actual likelihoods, ensuring reliable confidence estimates [216, 90, 23, 171]. A
calibrated probability of being anomalous equal to u means that among all instances
that get u as a calibrated probability, about u% of them will be anomalous [132, 231].
Formally, a model f is calibrated if

P(Y = 1| f (X) = u) = u ∀u ∈ [0, 1].

Well-calibrated probabilities have several benefits, such as that one can combine
values consistently or employ standardized decision rules. For example, if the
model’s probabilities are well-calibrated, one can threshold the probabilities to 0.5 and
predict the anomaly class for all examples with higher probability. That is, calibrated
probabilities allow adjustment of decision rules to handle varying class priors. More
generally, by introducing the costs for mispredictions c f p (false positives) and c f n (false
negatives), the optimal decision rule can be easily determined by setting the decision
threshold over the anomaly probabilities as λ = c f p

c f p+c f n
[216].

On the other hand, miscalibrated probabilities often manifest as the model being
underconfident or overconfident. In the case of underconfidence, the model believes
to be worse at separating classes than it actually is. That is, its predicted probabilities
tend to gather towards 0.5. One solution to fix underconfidence involves employing a
sigmoidal logistic curve to push predicted probabilities more toward the extremes of
the interval [0, 1]. On the contrary, overconfidence occurs when the classifier believes
it is better at class separation than it actually is. Hence, we need to push the predicted
probabilities toward 0.5 to make them less extreme. To address overconfidence, one
could design an inverse-sigmoidal map.

Existing calibration methods are traditionally used in a post-hoc fashion, namely they
leverage the learned model and a validation set to transform the model’s outputs into
calibrated probabilities. Formally, a post-hoc calibration map is a function g : R →
[0, 1] such that, ∀u ∈ [0, 1], it holds that P(Y = 1|g( f (X)) = u) = u. There is a long
literature of approaches [90, 133, 135, 166, 180, 231] for ensuring that this property is
obtained and we now briefly describe some prominent approaches: empirical binning,
isotonic calibration, logistic calibration and beta calibration.

Empirical Binning. Empirical binning is a straightforward method for constructing
calibration maps [250, 166]. This approach divides the model’s output range into B ∈ N
non-overlapping bins {Bi}i≤B, where a bin Bi ⊂ [0, 1] is a probability range. Then, it
links each bin to a (calibrated) probability ai ∈ [0, 1]:

g(s) = ai for s ∈ Bi.
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The goal is to find g that maps the non-calibrated scores s falling in the bin Bi to
the empirical frequency. One option is to leverage the calibrated probabilities ai to
minimize the loss

L =

B∑
i

∣∣∣P(Y = 1|Bi) − ai

∣∣∣.
Isotonic Regression. Isotonic regression, a widely employed non-parametric
calibration method, seeks the best calibration function among a set of monotonic
functions [16, 172, 167]. The method estimates a set of non-decreasing constant
segments, corresponding to a set of bins of varying width, with key parameters being
bin boundaries and edge values. Similarly to empirical binning, isotonic calibration
assigns a constant value to each bin. Unlike empirical binning, isotonic regression
dynamically learns bin boundaries from the data, allowing a variable number of bins
based on the training set. Formally, one can find the optimum set of bins and calibration
function by optimizing the loss

L =
1
N

N∑
i

(g(si) − yi)2

over the monotonic set of edges and values of the bins associated with g(si).

Logistic Calibration. Logistic calibration (also known as Platt scaling) proposes
transforming the scores into probability estimates using a logistic regression
function [219]. The parameters of Logistic calibration include a shape parameter
w ∈ R and a location parameter l ∈ R, and has the functional form of

g(s) =
1

1 + exp(−w · s − l)
,

where w and l can be estimated by optimizing the training log-likelihood.

Beta Calibration. Beta calibration is a probabilistic generalization of the logistic
calibration [134, 135]. Unlike logistic calibration, which assumes a normal distribution
of scores within each class, Beta calibration is based on the assumption of two Beta
distributions. This introduces a more flexible family of calibration functions with three
parameters: two shape parameters w1,w2 ∈ R and a location parameter l ∈ R. Thus, g
has the functional form of

g(s) =
1

1 + exp(−w1 · log(s) + w2 · log(1 − s) − l)
Similarly to the logistic calibration, the parameters w1, w2 and l can be estimated by
optimizing the log-likelihood on the training set. One can further generalize such an
approach by assuming Dirichlet distribution instead of the Beta [133].
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Transforming Scores into Class Probabilities in Anomaly Detection. In
most anomaly detection applications we lack labeled data with which to train such a
calibration model. Thus, three unsupervised methods are widely used to transform
scores into class probabilities. The linear and squashing methods map the scores to
probabilities using respectively a linear and a sigmoid transformation [74, 237]:

g(s) =
s −min S

max S −min S
(linear)

g(s) = 1 − 2−(
s
λ )

2

(squashing)

where min and max of S are computed using the training set, and λ is the decision
threshold set such that γ% of anomaly scores are greater.

The Unify method assumes that scores are normally distributed N(µS , σ
2
S ) and esti-

mates the class probability through the Gaussian cumulative distribution function [129]

g(s) = max
{

0, er f
(

s − µS
√

2σS

)}
where er f is the Gaussian error function.

Because of the absence of labels, there is no theoretical guarantee that these methods
are calibrated [81].

2.4.4 Learning with Rejection

In the standard supervised setting, one usually assumes that there is an unknown,
non-deterministic function h : Rd → {0, 1} that maps the examples to their target
label. Given a hypothesis spaceH of functions, the goal of a learner is to find a good
approximation to h. Typically, this can be done by finding a deterministic model f ∈ H
with a small expected risk R which is usually approximated using the training data

R( f ) B
∫
Rd×{0,1}

L( f (x), y) dP(x, y) ≈
N∑

i=1

L( f (xi), yi)
N

, (2.1)

where L is a suitable loss function such as the squared or zero-one loss.

In learning with rejection, the output space of the model is extended to include a
new value ® [105]. This new symbol means that the model abstains from making a
prediction. Conceptually, since the predictor f only approximates the true model h,
there are likely regions of the space where f systematically differs from h [49, 48].
Specifically, discrepancies between the predictor f and h can be due to inconsistent
data (e.g., classes overlapping), insufficient data (e.g., unexplored regions), or even
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incorrect model assumptions (e.g., f must be linear while h is not). Therefore, the
goal of rejection is to determine such regions to abstain from making likely inaccurate
predictions.

At prediction time, a model with rejection f® : Rd → {0, 1,®} outputs the symbol
® and abstains from making predictions when it is at a heightened risk of making a
misprediction, and otherwise returns the predictor’s output:

f®(x) =

® if the prediction is rejected;
f (x) if the prediction is accepted.

(2.2)

Types of rejection. A predictor is at heightened risk of making mistakes in three
different regions of the example space:

R1) when the two class distributions overlap, which refers to the examples x with
high class probability P(Y |X = x) for both classes;

R2) close to the predictor’s decision boundary, which refers to the examples x with
high variance VarD∗ ( f (x)) over possible choices of datasets D∗ to train f ;

R3) far from the training data, which refers to the examples x with low density p(x).

In the first region, a deterministic predictor is likely to make mistakes because the
relationship between the input and the output is non-deterministic. In the second region,
the predictor has high instability because its prediction depends on the specific training
examples. In the third region, the predictor struggles to make the correct prediction
because of the scarcity of training examples.

Based on this intuition, rejection is warranted if an example x falls in one of the three
regions (R1-R3). This leads to two types of rejections: Ambiguity Rejection, if x falls
in a region where the class is ambiguous (R1, R2), and Novelty Rejection, if x is a rare
example such as a novelty (R3).

Ambiguity rejection allows a model to abstain from predicting an example x in regions
where the model f fails to capture the correct relationship h between X and Y [41,
40, 103]. This can happen either due to the probabilistic nature of Y |X, which a
deterministic predictor f cannot handle, or because the dataset D is insufficient to
learn the true function h. The first scenario is often observed as overlapping classes
in the feature space. This term is usually irreducible and unrelated to the predictor f .
The second scenario occurs when the discrepancy between f and h is large. This is
connected to the choice of the hypothesis spaceH , and the acquired dataset D, which
may not allow learning the correct function h.
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Novelty rejection allows a model to abstain from predicting examples that are unlikely
to occur in the training data [58, 47]. Often, these examples are referred to as novelties.
For them, the predictor f does not output a correct prediction because the scarcity of
training data similar to x prevents f from learning the correct target y. For instance, the
sampling distribution differs from the true distribution and, thus, parts of the feature
space are not represented in the data [232, 104, 109]. Similarly, a new distribution may
appear after training and these new examples are out-of-distribution [138, 241, 46].

Because the concept of anomaly often overlaps with the concept of novelty (see
Section 2.1.2), performing novelty rejection may end up targeting the whole anomaly
class for rejection, defeating the goal of using an anomaly detector. Thus, in Chapter 7,
we focus on improving the reliability of a detector performing ambiguity rejection.

The rejection architecture. At prediction time, the key design decision for a
model with rejection is how to structure the relationship between the predictor and
rejector. Commonly, researchers have used three architectural principles: (a) a
separated architecture, where the rejector operates independently from the predictor
(e.g., serving as a filter), (b) a dependent architecture, where the rejector bases its
decision on the output of the predictor (e.g., thresholding a confidence metric), and
(c) an integrated architecture, where predictor and rejector are integrated into a single
model (e.g., rejection is considered as an additional class). Because of its simplicity
and effectiveness, in this dissertation, we focus mainly on the dependent architecture.

A canonical example of dependent rejection is when r consists of a pair [confidence
Ms, rejection threshold τ] such that an example is rejected if the detector’s confidence
is lower than the threshold. The model output becomes

f®(x) = ŷ® =

ŷ if Ms > τ;
® if Ms ≤ τ;

ŷ® ∈ {0, 1,®}.

Traditional confidence metrics (such as calibrated class probabilities) quantify how
likely a prediction is to be correct. In binary classification tasks, a common approach is
to design a confidence metric Ms as the margin between the two classes’ probabilities:

Ms = |P(Y = 1|s) − P(Y = 0|s)| = |2P(Y = 1|s) − 1|.

Then, a standard approach to set the rejection threshold is to evaluate different values
for τ to find a balance between making too many incorrect predictions because τ is too
low (i.e., ŷ , y but Ms > τ) and rejecting correct predictions because τ is too high (i.e.,
ŷ = y but Ms ≤ τ) [156, 249].

Both designing a confidence metric using calibrated probabilities Ms and setting
an optimal rejection threshold τ require labels [40] which are unavailable in an
unsupervised setting.



Chapter 3

Class prior estimation in
active positive and unlabeled
learning

Because anomalies are rare and sparse events, understanding whether a collected
example is anomalous may be challenging even for a domain expert. For instance,
labeling examples collected through several sensors as anomalies might not be a trivial
task, especially when the anomalies manifest as unusual configurations of multiple
sensors altogether. Therefore, we realistically assume that the expert is not capable of
providing a label when queried with real anomalies.1 Roughly speaking, the expert can
provide either a normal label (positive) or no labels.

In this Chapter, we explore the combination of PU learning with active learning [2,
229]. That is, the detector initially has access to only unlabeled data, and normal
labels are gradually acquired using an active learning strategy [212, 211]. Using active
learning introduces the challenge that the SCAR assumption no longer holds as the
active learning strategy has a clear bias when selecting examples to be labeled. Thus,
estimating the class prior is a hard task because one needs to account for such a biased
selection mechanism.

Problem Statement

The problem that this chapter addresses is the following:

1In this Chapter, we indicate the normal examples as positives.

39
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Given: An unlabeled dataset D, a non-traditional classifier f trained on PU data, an
active learning strategy to obtain l labeled examples;

Do: Estimate the class prior α = 1 − γ, i.e. the proportion of normal examples.

Contributions of this Chapter.

This chapter analyzes the problem of estimating the contamination factor from labeled
normal and unlabeled data, where the normal labels are acquired using active learning.
We link our task to the traditional PU Learning setting and we refer to the normal class
as the positive and to the class prior as the complementary of the contamination factor.
That is, the class prior is the proportion of positive examples in the data.

In summary, we make four contributions. First, we show how to estimate the class
prior using each example’s propensity score, which is the probability that an example
is selected by the active learning strategy to be labeled, given that it belongs to the
positive class. Second, we prove that the estimate of the class prior converges to the true
class prior. Third, we propose a method called CAPe (Class prior estimation in Active
Pu lEarning) for estimating the class prior in practice. Finally, we empirically evaluate
CAPe across several anomaly detection datasets. The experiments highlight that CAPe
is able to make more accurate estimates of the class prior than current state-of-the-art
methods.

The content of this chapter is based on the following publication [185]:2

Perini, L., Vercruyssen, V., and Davis, J. Class prior estimation in active positive
and unlabeled learning. In Proceedings of the 29th International Joint Conference on
Artificial Intelligence and the 17th Pacific Rim International Conference on Artificial
Intelligence (IJCAI-PRICAI 2020), pp. 2915–2921.

3.1 Methodology

Applying the active learning strategy results in a set of l labeled positive examples
and N − l unlabeled examples. Subsection 3.1.1 describes how to use this partially
labeled data to estimate the class prior. However, computing the class prior requires
knowing the propensity scores, which is the probability of the example being selected
by the active learning strategy to be labeled. Subsection 3.1.2 discusses how to tackle

2LP provided the main body of the work (code, theory), VV provided research direction and designing
proper experiments, JD assisted in nailing down the right research questions, formalizing and structuring the
text.



METHODOLOGY 41

this issue. Finally, Subsection 3.1.3 shows that if the computed propensity scores are
accurate, the estimated class prior theoretically converges to the true class prior.

3.1.1 Estimating the Class Prior

For now, we assume that the propensity scores are known. Intuitively, the class prior
can be derived by combining the proportion of examples labeled positive by the user,
and the expected proportion of positive examples among the remaining unlabeled
examples:

α = E[P f (Y = 1|X)] = E[O|X]+E
[
(1−O|X)

P f (Y = 1|X) (1−e(X))
1−P f (Y = 1|X) e(X)

]
(3.1)

where O|X is 1 if the example’s label has been observed and 0 otherwise, P f (Y = 1|X)
is the probability that an example belongs to the positive class according to the trained
classifier f trained on the PU data, and e(X) is the propensity score defined in Eq. 3.2.

We derived the previous identity from Bekker et al. [22] by applying the expectation
on both sides. The main assumption is that f returns accurate estimates of the
class probabilities. Thus, class prior estimates also depend on the correctness of
this assumption. Roughly speaking, a labeled example contributes fully towards the
positive class prior, while an unlabeled example only contributes its probability of
being positive weighted by its probability of being labeled.

3.1.2 Estimating the Propensity Scores

The propensity score for an example x is the proportion of all datasets containing x that
can be drawn from the distribution p(X), in which x’s label is observed

e(x) = P(O = 1|x,Y = 1). (3.2)

Whether x’s label is observed depends on both the dataset and the active learning
strategy: whether x is selected to be labeled will depend on whether another more
informative unlabeled example (according to the active learning strategy) is present in
the dataset. This is further complicated by the fact that, in practice, we only have one
dataset from which to estimate propensity scores.

Conceptually an example’s propensity score can be computed as:

e(x) =
∫
Rd
P(O = 1|x,Y = 1,D∗) dP(D∗|x,Y = 1) =

∑
{D∗⊂Rd : x∈D∗}

e(x|D∗)·dP(D∗|x,Y = 1),

(3.3)
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where the sum is over the infinitely many possible datasets D∗ that can be drawn from
Rd, dP(D∗|x,Y = 1) is the infinitesimal probability to draw a specific sample D∗, and
e (x|D∗) is what we call the grounded propensity score given the observed dataset D∗.
Our key insight is that for a fixed dataset D∗, e(x|D∗) is either 0 or 1: either the example
is in the top-l most informative examples of the dataset according to the active learning
strategy (1) or it is not (0).3

Next, we tackle the problem of summing over infinitely many possible datasets. This
can be solved by decomposing the problem into: (1) an inner loop summing over
all subsets of Rd with a given cardinality m, and (2) an outer loop summing over all
possible cardinalities.

Inner loop: summing over the subsets. Considering only those subsets of Rd

with cardinality m, we define:

em(x) B
∑

{D∗⊂Rd ,|D∗ |=m,x∈D∗}

e(x|D∗) · dP(D∗|x,Y = 1). (3.4)

Taking the sum over all possible subsets of cardinality m poses two questions. First, is
this sum actually countable, even if the set is apparently uncountable? And second, if
so, how can we compute it? The countability of the sum is proven using the following
theorem.

Theorem 1. Let I be any set, v : I → [0,+∞). Let’s define

∑
i∈I

v(i) = sup

∑
i∈J

v(i) : J ⊂ I, |J| < +∞

 .
Then, if

∑
i∈I v(i) < +∞, the set

A = {i ∈ I : v(i) , 0}

is at most countable.

Proof. Let’s consider ε > 0 and Aε = {i ∈ I : v(i) > ε}. Without loss of generality,
we suppose that |Aε| = +∞ and that its cardinality is countable. Then there exists a
sequence {xn}n∈N ⊆ Aε such that v(xn) > ε for all n ∈ N. So, since ε is a constant, the
inequality

∞∑
n=1

v(xn) >
∞∑

n=1

ε = +∞

3That is under the assumption that there is no randomization in the active learning strategy or learning
algorithm.
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holds. This leads to a contradiction:

sup

∑
i∈J

v(i) : J ⊂ I, |J| < +∞

 = +∞.
As a result the set Aε is finite. Because of the arbitrary choice of ε, let’s choose ε = 1

t ,
for t ∈ N. Now it is evident that

A = {i ∈ I : v(i) , 0} =
⋃
t∈N

A 1
t

is countable, since it is a countable union of finite sets. □

To answer the second question, the sum over all possible subsets with cardinality m can
be approximated through a sequence of u subsets. Since the sum is actually countable,
there exists a sequence of sets D∗(m1), . . . ,D

∗
(mu), . . . with non-zero values such that

mu∑
i=m1

e
(
x|D∗(i)

)
· dP

(
D∗(i)|x,Y = 1

) u→∞
−−−−→ em(x).

Subsections 3.2.1 and 3.2.2 explain how to compute this sequence in practice.

Outer loop: summing over the cardinalities. Next, we need to sum over all
possible cardinalities to arrive at the propensity score for an example x. So, we define

em(x) B
m∑

j=1

e j(x)

where e j(x) is defined in Eq. 3.4. This sequence converges to the actual propensity
score for m going to +∞.

Proof.
m∑

j=1

e j(x) =
m∑

j=1

∑
{D∗⊂Rd : |D∗ |= j, x∈D∗}

e(x|D∗) · dP(D∗|x,Y = 1)

=
∑
{D∗⊂Rd}

e(x|D∗) · dP(D∗|x,Y = 1)
m∑

j=1

1{|D∗ |= j, x∈D∗}(D∗)

=
∑
{D∗⊂Rd}

e(x|D∗) · dP(D∗|x,Y = 1)1⋃m
j=1{|D∗ |= j, x∈D∗}(D∗)

−→
∑

{D∗⊂Rd , x∈D∗}

e(x|D∗) · dP(D∗|x,Y = 1) for m→ ∞.
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□

So, theoretically, it is possible to determine m̃ and some small error ε such that, for m̃
“large enough”,

∥em̃(x) − e(x)∥ =

∥∥∥∥∥∥∥∥
m̃∑

j=1

e j(x) − e(x)

∥∥∥∥∥∥∥∥ < ε.
Practical computation of the propensity scores. In practice, in order to compute
the outer and inner loop of the sum in Eq. 3.1.2, we need to choose the parameters m
and u. Their values, however, are restricted by the observed dataset D: m is maximally
equal to N and the u subsets can only be drawn from D. Moreover, computing the
inner loop over all possible subsets of a certain cardinality is prohibitively expensive.
For instance, if D contains 2000 examples and the cardinality is 1000, we would need
to loop over > 10600 possible subsets. We circumvent this issue by applying standard
counting techniques on the available dataset to directly estimate em(x). Then, through
an average approximation of the probabilities, the inner loop can be completely avoided.
Section 3.2 explains this in detail.

3.1.3 Convergence to the True Class Prior

If we obtain an accurate estimate of the propensity scores, the convergence of the
estimated class prior to the true class prior follows from the following theorem:

Theorem 2. Assume that there exists a sequence em(x) of functions which converges to
the propensity score e(x) for all x ∈ D. Then, given the sequence of class priors

αm B E

[
O + (1 − O)

P f (Y = 1|X) (1 − em(X))
1 − P f (Y = 1|X) em(X)

]
,

the following result holds

αm −→ α for m→ ∞.

Proof. The hypothesis means that

lim
m→∞

em(x) = e(x) ∀x ∈ D.
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Then,

lim
m→∞

αm = lim
m→∞
E

[
O + (1 − O)

P f (Y = 1|X) (1 − em(X))
1 − P f (Y = 1|X) em(X)

]

= E

[
lim

m→∞

[
O + (1 − O)

P f (Y = 1|X) (1 − em(X))
1 − P f (Y = 1|X) em(X)

]]

= E

[
O + (1 − O)

limm→∞ P f (Y = 1|X) (1 − em(X))
limm→∞ 1 − P f (Y = 1|X) em(X)

]

= E

[
O + (1 − O)

P f (Y = 1|X) (1 − e(X))
1 − P f (Y = 1|X) e(X)

]
= α,

where the first step is due to the dominated convergence theorem (the sequence of
functions is bounded because of probabilities) and the second equality holds since both
the factors are non zero and their limit exists for any x. □

3.2 Active PU Learning

The active learning strategy asks the user to label those examples that are the most
informative, according to some criterion, for learning the classifier. While it is perfectly
possible that strategy will query the labels for examples belonging to both classes, as
discussed in the Introduction situations will arise where a user will only label positive
examples. We look at both an ideal and a realistic case. In the ideal case, we assume
that the user is a perfect oracle (subsection 3.2.1). The queried examples are labeled
only if their real class is positive, and in all other cases, the user does not know the
true label and the queried examples remain unlabeled. In the realistic case, we assume
that the user is an imperfect oracle (subsection 3.2.2). The user is not always able to
recognize the examples, so that with a certain probability the queried example might
not be labeled. In addition, there is a low probability that the user might label a queried
example as positive while its true label is negative.

Next, we describe CAPe (Class prior estimation in Active Pu lEarning) which is our
practical approach for estimating the class prior from data. Its estimate depends on
whether the user is a perfect or imperfect oracle which changes how em(x) is estimated.
In the ideal case, the probability to label an example only depends on its true label. In
the realistic case, it also depends on a probability measure that represents the user’s
uncertainty about its true label.
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3.2.1 Propensity Scores under Perfect Oracles

The direct computation of em(x) breaks down into three parts. First, we compute the
probability that x is labeled in a given subset with cardinality m. Second, we multiply
this probability with the count of how many times x is part of a subset of size m sampled
from the dataset D. Third, we compute the expected probability of sampling these
subsets.

Label probability. In the ideal case, the user is a perfect oracle. If a truly positive
example is selected to be labeled, the user always labels it correctly.4 Therefore, given
a subset D∗ of the dataset D, an example in this subset is labeled if it is in the top-l most
informative examples of D∗ (denoted as D∗l ) according to the active learning strategy
because those are the examples that will be queried. If we use the active learning
strategy to construct a global ranking of all the examples in D where the higher-ranked
examples are queried first, we can reasonably assume that this ranking is preserved for
the examples in any subset of D. Let x j+1 be j + 1-th example in the global ranking
(G.R.). The probability that x j+1 is queried is equal to the probability that it is in the
top-l of a sampled subset D∗:

P(x j+1 ∈ D∗l ) =


1 if x j+1 ∈ top-l of G.R.

l−1∑
t=max{0,m+ j−N}

( j
t)·(N− j−1

m−t−1)
(N−1

m−1)
otherwise.

(3.5)

where t is the number of examples ranked higher in the global ranking than x j+1 in any
given subset D∗ of D.

Counting the subsets. The number of times x j+1 will be chosen among N elements
by simultaneously selecting m examples is:

|{D∗ ⊆ D : x j+1 ∈ D∗, |D∗| = m}| =
(
N − 1
m − 1

)
. (3.6)

Expected probability of sampling the subsets. Assuming that the samples are
drawn independently, the mean measure of a sample of m elements drawn from the
population with distribution p(X) is:

E
[
p
∧

(D∗)
]
= E

 m∏
i=1

p
∧

(xi)

 = m∏
i=1

E
[
p
∧

(xi)
]
, (3.7)

4If a truly negative example is selected, no label is given.
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where p
∧

is estimated using a kernel density estimator. Note, we can only draw samples
consisting of examples in D. Finally, the em(x j+1) for any example x j+1 is derived as:

em(x j+1) = P(x j+1 ∈ D∗l ) ×
(
N − 1
m − 1

)
×

m∏
i=1

E
[
p
∧

(xi)
]
. (3.8)

A final pseudo-code summarizing our approach CAPe is shown in Algorithm 1.

3.2.2 Propensity Scores under Imperfect Oracles

In the real world, the user is an imperfect oracle. If a truly positive example is selected
to be labeled, she may be unsure of its label and decide not to label it. If a truly negative
example is selected to be labeled, there is a small probability she mislabels it as a
positive. This requires changing the label probability to include the probability that the
user is able to label the example:5

P(O = 1|x,D∗) = P(Q = 1|x,D∗)P(O = 1|x,D∗,Q = 1),

where Q is the binary random variable that is 1 if x is queried and 0 otherwise. Note
that the previous identity is obtained because the probability of labeling an example
not queried is 0.

Query probability. The probability of querying an example depends on whether or
not the example is in the top-l of a subset D∗ according to the active learning strategy:

P(Q = 1|x,D∗) =P(Q = 1|D∗, x ∈ D∗l )P(x ∈ D∗l |D
∗)+P(Q = 1|D∗, x < D∗l )P(x < D∗l |D

∗)

=P(x ∈ D∗l |D
∗)+P(Q = 1|D∗, x < D∗l )P(x < D∗l |D

∗).

First, if an example is in the top-l of D∗, it is always queried. Second, if an example
is not in the top-l, whether it is queried now depends on the user’s uncertainty about
the labels of the higher-ranked examples in D∗. Let x j+1 be j + 1-th example in the
general ranking. To compute the probability that x j+1 is queried, we first simplify the
problem by approximating the user’s uncertainty about any example x with the mean
of the user’s uncertainty over all the examples in the observed dataset D. Then, the
probability can be computed as:

P(Q = 1|D∗, x j+1 < D∗l ) =
min{ j,m−1}∑

t=max{l,m−N+ j}

(
j
t

)(
N − j − 1
m − t − 1

) t∑
z=t−l+1

(1 − p)z p t−z−1 (3.9)

5For brevity, we omit |Y = 1 everywhere in this section, even though all the events in the equations are
conditioned on Y = 1.
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where t is the number of examples ranked higher than x j+1 in a given subset D∗, z is the
number of examples out of t that the user cannot label, and p̄ is the user’s uncertainty
for any example. Intuitively, Eq. 3.9 considers all possible scenarios where the user
fails to label enough examples such that x j+1 is queried and sums the probabilities of
these scenarios.

Label probability under user’s uncertainty. Finally, the label probability of an
example x in position j + 1 is:

P(O = 1|x,D∗) = P(O = 1|x,D∗,Q = 1)P(Q = 1|x,D∗)

= P(O = 1|x,D∗,Q = 1)[P(x ∈ D∗l |D
∗) + P(Q = 1|D∗, x < D∗l )P(x < D∗l |D

∗)],
(3.10)

where P(O = 1|x,D∗,Q = 1) is the user uncertainty of that example, P(x ∈ D∗l |D
∗) is as

in Eq. 3.5, P(Q = 1|D∗, x < D∗l ) is as in Eq. 3.9 and P(x < D∗l |D
∗) is 1 − P(x ∈ D∗l |D

∗).
The final propensity score for an example x under user uncertainty is the product
between the factors in Eq. 3.6, 3.7, and 3.10.

Algorithm 1 Pseudo-code for the algorithm of CAPe.
Input: A PU dataset D = {(x, o)} of size N; a query budget l; an AL strategy Γ
assigning uncertainty scores (higher = more likely to be selected).
Output: α, the class prior.

1: f ← Fit a non-traditional classifier on D
2: π← Compute_probability( f ,D) // P f (Y = 1|X = x)
3: GR← Sort({Γ(x) : x ∈ D}, order =“descending”)
4: em ← Array(N) // initialize prop. scores
5: mlist ← {0.02, 0.04, 0.06, . . . , 0.4, 0.5, . . . , 0.9} · N
6: for m∗ in mlist do
7: D∗ ← Sample(D, size = m∗)
8: em ← Array(N)
9: for j ∈ [1, . . . ,N] do

10: em[ j]← Compute_propensity(x j,D∗, l,GR,N) // see Eq. 3.8
11: em[ j] + = em[ j]
12: end for
13: end for
14: e← em/|mlist|
15: α← Compute_prior(e, π,D) // see Eq. 3.1
16: return α
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3.3 Experiments

We address the following empirical questions:

Q1. Can CAPe accurately estimate the true class prior α?

Q2. How does user uncertainty affect CAPe’s ability to estimate the class prior?

Q3. Does a more accurate estimate of the class prior improve the performance of an
anomaly detector?6

3.3.1 Experimental Setup

Methods. We compare: our proposed method CAPe7, TIcE which estimates the
class prior using decision tree induction [19], and Km1 and Km2 which compute the
class prior by modeling the distribution of the positive examples [194].

Data. The benchmark consists of 9 standard anomaly detection datasets from [33].8

The datasets are listed in Table 3.1. They contain more normals than anomalies with
the normal class prior α varying between 0.64 and 0.99.

Dataset # Examples (N) # Vars (d) α γ

WBC 454 9 0.9780 0.0220
Shuttle 507 9 0.9862 0.0138
WDBC 367 30 0.9728 0.0272
Stamps 340 9 0.9088 0.0912
Ionosphere 351 32 0.6410 0.3590
Cardiotocography 434 21 0.9493 0.0507
PageBlocks 421 10 0.8979 0.1021
Pima 625 8 0.8000 0.2000
Annthyroid 713 21 0.9257 0.0743

Table 3.1: Benchmark anomaly detection datasets (γ is the contamination).

6The anomaly detection algorithms use the contamination factor γ = 1−α to transform scores into binary
predictions.

7Code: https://github.com/Lorenzo-Perini/Active_PU_Learning
8Data: www.dbs.ifi.lmu.de/research/outlier-evaluation

https://github.com/Lorenzo-Perini/Active_PU_Learning
www.dbs.ifi.lmu.de/research/outlier-evaluation
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Setup. In all experiments, SSDO with its default parameters is used as the semi-
supervised anomaly detector [237].9 SSDO learns a classifier from unlabeled and
normal examples. We use IF [150] as its unsupervised prior. Using the method
from [129], the anomaly scores are mapped to probabilities. We use uncertainty
sampling as active learning strategy [211]. We model the user’s uncertainty using the
kernel density estimate as implemented in Scikit-Learn version 1.4.0. For each dataset
and compared method, the following procedure is repeated five times. First, the dataset
is split into training and test sets using a stratified 5-fold split. All training data are
initially unlabeled. Then iteratively, the user is queried until l = 5 new labels are added
to the training set following the active learning strategy, and the probability of labeling
the example correctly is equal to the user’s uncertainty. After adding new labels to the
training data, the class prior is estimated on the training data, the SSDO classifier is
retrained, and its performance on the test set is measured (using the estimated class
prior to obtaining binary predictions for the test data). The process stops when 150
examples are labeled. We report the results averaged over all five runs.

Hyperparameters. The parameters of TIcE, Km1, and Km2 are set to the
values recommended in the original papers [220]. CAPe has only one hyper-
parameter: the range of cardinalities m in the outer loop, which we set to N ·
{0.02, 0.04, 0.06, . . . , 0.4, 0.5, . . . 0.9}.

3.3.2 Experimental Results

Q1: Recovering the class prior. Figure 3.1 shows the mean absolute error (MAE)
of the estimated class prior as a function of the number of labeled training examples
with no user uncertainty. On seven of the nine datasets, CAPe outperforms the three
baselines. On these datasets, our estimate converges to the correct one, often with
< 100 labels. On two datasets, TIcE results in (slightly) better performance than CAPe.
In these two datasets, our approach tends to overestimate the class prior, likely due
to inaccuracies in the underlying SSDO model (i.e., anomalous examples have a high
predicted probability of being normal). In addition, as more examples are labeled,
CAPe’s estimate of the class prior converges to the true class prior smoothly. In contrast,
acquiring a small number of labels (e.g., 5) may cause its competitors’ estimates of the
class prior to change dramatically.

Q2: Impact of user uncertainty. We repeat the previous experiment in a more
realistic setting where the user is uncertain and makes mistakes in the labeling.
Figure 3.2 shows how the mean absolute error (MAE) of the estimated class prior

9Code: https://github.com/Vincent-Vercruyssen/anomatools

https://github.com/Vincent-Vercruyssen/anomatools
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Figure 3.1: MAE of class prior estimates as a function of the number of labels, under
no user uncertainty. Lower numbers are better.

varies as a function of the number of labeled instances for each method. Again, CAPe
results in the most accurate estimates on seven of the nine datasets. Again, its estimates
fluctuate less than its competitors.

Q3: Class prior impact on anomaly detection. Most anomaly detectors require
knowing the proportion of anomalies in the dataset either for training the detector itself
or for thresholding the detector’s numeric outlier scores to be able to decide practice.
In this experiment, we consider the second scenario and use the estimated class prior
to converting SSDO’s numeric output into a decision rule. Figure 3.3 shows the F1
score for SSDO’s model when using the class prior estimated by each method to set the
decision threshold. Here, the results are more mixed as CAPe yields equivalent or more
accurate estimates in a small majority of the cases. Note that the black dashed line
represents performance when using the true class prior: using the true and estimated
priors result in similar predictive performance.
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Figure 3.2: MAE of class prior estimates as a function of the number of labels, assuming
the user’s uncertainty. Lower numbers are better.

3.4 Related Work

Several papers have studied the combined setting of PU learning and active learning.
However, while we focus on estimating the class prior, these papers have a different
focus. Ghasemi et al. [79] designed an uncertainty sampling active learning strategy
specifically tailored to PU datasets. Barnabé-Lortie et al. [17] developed an active
learning strategy for one-class classification by querying the examples that match the
learned class the least. There are a number of different ways to apply active learning
strategies when dealing with one-class classification problems [228, 229]. Finally,
G. He et al. [100] applied active learning to PU time series data by querying the
examples with both high uncertainty and high utility.

3.5 Conclusion

In summary, this Chapter introduced a novel approach CAPe for estimating the class
prior in a Positive-Unlabeled (PU) scenario, where positive labels (i.e., normals) are
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Figure 3.3: The F1 score when using each approach’s estimated class prior to threshold
SSDO’s numeric output into a decision rule.

collected through an active learning strategy. Our method computes the class prior
by estimating the propensity score for each unlabeled example, which represents how
likely the active learning strategy is to query that example’s label to a user. Our
theoretical analysis proves that CAPe’s class prior estimates converge to the true value,
along with the estimated propensity scores. We analyzed two settings for estimating the
propensity scores: one assuming the user makes no mistakes and labels only positive
examples (oracle), and the other considering that the user may make mistakes (imperfect
user). Experimentally, we showed that CAPe outperforms existing approaches in (1)
achieving accurate estimates of the class prior and (2) increasing an anomaly detector’s
performance by leveraging the estimated class prior to transform scores into hard
predictions.

Limitation. Our theoretical analysis shows that CAPe’s estimates converge when
sampling infinitely many subsets, which cannot be done in a real-world setting.
Increasing the number of drawn subsets yields better estimates but enlarges the
computational effort. Thus, future work would target improving the computational cost
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of CAPe by, for example, finding alternatives to sampling D. 10

In the next Chapter, we investigate another realistic setting for anomaly detection:
monitoring multiple related assets, such as a fleet of wind turbines. Specifically, we
study how to leverage the contamination factor, which is given for one (source) dataset,
to estimate the contamination of another (target) dataset.

10Currently, we just provide a fast version of CAPe implemented in Cython.



Chapter 4

Transferring the
contamination factor between
anomaly detection domains
by shape similarity

Real-world anomaly detection tasks often involve monitoring a fleet of related entities
such as machines [197], windmill farms [255] or retail stores [237]. While the entities’
behaviors are related in such cases, there are important differences that will affect
the collected data. For instance, windmill-specific properties (e.g., orientation, size,
location) or store-specific properties (e.g, size, services, or opening hours) will affect
the observed data. Consequently, how many anomalies are present will vary from
entity to entity. Given that such tasks may involve monitoring 100s of entities,
estimating the contamination factor for each one separately by labeling data would be
too onerous. Thus, an interesting avenue to explore is whether it is possible to transfer
a known contamination factor from data about one entity (the source domain) to data
collected from another similar entity (the target domain). If this were possible, it would
significantly decrease the labeling burden, as one would no longer need to collect labels
for all entities.

Problem Statement

The problem that this chapter addresses is the following:

55
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Given: An unlabeled source dataset DS with a known contamination factor γS , an
unlabeled target dataset DT

m, and an anomaly detector f ;

Do: Estimate the contamination factor γT
m of the target domain.

Contributions of this Chapter

This chapter proposes TrADe (transferring the contamination factor between anomaly
detection domains by shape similarity), the first algorithm for transferring the known
contamination factor from a source domain to a target domain where it is unknown.
TrADe’s key assumption is that if the distributions over the anomaly scores of the
normal examples computed by a given anomaly detection algorithm, are similar in shape
in both the source and target domain, the target anomaly score threshold can be derived
from the (known) source threshold. First, we use the known source contamination factor
to construct a proper distribution over the normal examples in the source domain. Then,
we find a threshold on the target domain anomaly scores that makes the distribution over
the anomaly scores of the resulting “normal” target examples as similar as possible to
the earlier-derived source distribution. This is constructed as an optimization problem.
Finally, we use the resulting threshold to infer the target domain’s contamination
factor. We theoretically analyze our approach and prove that the estimated target
contamination factor converges to its true value when the distribution of the target
scores becomes closer to their ground-truth distribution. Empirically, we performed an
extensive evaluation on 206 source-target pairs arising from three real-world domains:
detecting anomalous water usage in retail stores, detecting blade icing on windmills,
and detecting botnets on IoT traffic data. We find that TrADe outperforms multiple
competitors.

The content of this chapter is based on the following publication [188]:1

Perini, L., Vercruyssen, V., and Davis, J. Transferring the Contamination Factor
between Anomaly Detection Domains by Shape Similarity. In Proceedings of the
Thirty-Six AAAI Conference on Artificial Intelligence (AAAI 2022), volume 36, pp.
4128–4136.

4.1 Methodology

Our method TrADe estimates γT
m as follows. First, TrADe trains two separate anomaly

detectors. It trains one on the source data and uses it to assign an anomaly score to each
example in DS . It trains the other one on the target data and uses it to assign an anomaly

1LP provided the main body of the work (code, theory, text), VV assisted with experiments and nailing
down the right research questions, JD guided formalizing and structuring the text.



METHODOLOGY 57

De
ns

ity
 Fu

nc
tio

n

store1-hour1 store1-hour2 store1-hour3 store1-hour4

store2-hour1 store2-hour2 store2-hour3 store2-hour4

0.25 0.75

store3-hour1

0.25 0.75
Anomaly Scores

store3-hour2

0.25 0.75

store3-hour3

0.25 0.75

store3-hour4

Figure 4.1: Illustration of how the distribution anomaly scores produced by the same
anomaly detection algorithm f on related real-world stores exhibit a similar shape.

score to each example in DT . Because the domains are related and normal behaviors are
similar, the key insight is that the source and target distributions of the normal examples’
anomaly scores will be similar (but not necessarily equal). That is, there may be scales,
offsets or shifts but not fundamental changes in the underlying distribution. Figure 4.1
motivates this assumption, showing that anomaly scores produced by algorithm f on
multiple related domains follow a similar distribution when looking only at the low
scores, which by construction correspond to the normal examples. However, because
both datasets are unlabeled, we do not know the distribution of the normal examples’
anomaly scores. Second, TrADe uses the known source contamination factor γS to set
a threshold λS on the source anomaly scores. Examples with an anomaly score lower
than λS are considered normal, yielding the distribution over their anomaly scores,
which we call the λcut distribution. Third, TrADe derives the target threshold λT

m
by solving an optimization problem: λT

m is chosen such that shapes of the resulting
λT

mcut distribution and the λS cut distribution are as similar as possible. This leverages
our earlier insight. Finally, TrADe predicts the target contamination factor γT

m as the
proportion of target examples with an anomaly score above the value of λT

m. The
following subsections describe each of these steps in detail. Then, we explore the
theoretical properties of TrADe.

Notation. In this chapter, we focus on the anomaly score random variables S ,
T , and Tm referring to the ground-truth anomaly scores of, respectively, the source
domain, the target domain, and the sampled target dataset. We linearly normalize
their distributions to have support in [0, 1] and denote by s, t, and tm their probability
density functions.2 Finally, we denote their contamination factors by γS = P

(
YS = 1

)
,

2We use this notation instead of, respectively, p(s), p(t) and p(tm) because in this chapter we do not
provide any point-wise analysis but we only deal with distributions and densities.
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γT = P
(
YT = 1

)
, γT

m = P
(
YT

m = 1
)
, where 1 is the anomaly class. Because our analysis

requires highlighting the number of examples belonging to the target dataset, every
target domain variable is indicated with the index m, such as the dataset DT

m (of size
|DT

m| = m), which is a small (and therefore potentially non-representative) set of
examples drawn from p(XT ,YT ).

4.1.1 Modeling the Distribution of the Anomaly Scores of the
Normal Examples in DS

Modeling the distribution of anomaly scores assigned to the source normal examples
is challenging because we lack labels. Instead, we exploit the fact that the source
domain’s contamination factor γS is known. First, we set a threshold λS on the source
anomaly scores such that the proportion of examples with score > λS is equal to γS .
Then, we model the distribution of normal scores as the distribution of scores ≤ λS by
performing a normalization such that the support of the new distribution is again [0, 1]
and its area is equal to 1. More generally, for an arbitrary threshold value λ, we call
this derived distribution the λcut distribution and define it as follows:

Definition 4. Let U be any random variable with support in [0, 1] and probability
density function u. Then, for any λ ∈ [0, 1], we define the λcut distribution of U as:

uλ(x) B u(λx) ·
λ∫ λ

0 u(x′) dx′
for any x ∈ [0, 1].

Proposition 3. For any λ ∈ [0, 1], uλ is a probability density function.

Proof. See the Appendix A for the formal proof. □

This step assumes that the anomaly detection algorithm yields a reasonable ranking
of the examples from least to most anomalous. However, even if the ranking is not
perfect, the subsequent transfer step can still be accurate because the same algorithm is
used to derive both the source and target λcut distributions. Thus, incorrect predictions
are likely similarly distributed in both domains.

4.1.2 Finding the Target Threshold λT
m via Transfer

If we knew the threshold λT
m on the target anomaly scores that separates the normal

examples from the anomalies, we could trivially estimate the target contamination
factor. Therefore, we attempt to derive λT

m by exploiting our assumption that the source
and target distributions of the normal examples’ anomaly scores are similar (given they
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are derived using the same anomaly detector). This can be solved by attempting to find
a value λT

m that yields a λT
mcut distribution in the target domain that is similar to the

source’s λS cut distribution. We can measure the similarity between two distributions
p(S ) and p(T ) using the Kullback-Leibler (KL) divergence:

KL (S ||T ) =
∫ 1

0
s(x) log

(
s(x)
t(x)

)
dx,

where s and t are continuous probability density functions. Intuitively, the KL
divergence quantifies the amount of information lost when approximating S with
T with small KL divergence scores corresponding to little lost information, and hence
similar shapes. We selected the KL divergence for three reasons. First, its theoretical
properties enable a convergence study [75]. Second, it is a widely used measure in
the literature [24]. Third, it is stronger than several other similarity measures (e.g.,
maximum gap) as they are upper bounds of KL [80].

We formulate our task as finding the threshold λT
m such that the KL divergence between

the corresponding target λT
mcut distribution and the source’s λS cut distribution is

minimal:
λT

m = arg min
λ∈[δ,1]

{
KL

(
S λS

∣∣∣∣∣∣∣∣ T λ
m

)}
, (4.1)

where S λS
and T λ

m are the random variables with, respectively, the λS cut and λcut
distributions. The δ > 0 is a small value that depends on the detector f and on the
datasets, and represents the lower boundary for the choice of λT

m. The contamination
factor is usually small such that λT

m > 0. If λT
m = 0, all the examples would be

anomalous.

Theoretically, there may be more than one solution to Equation 4.1 because the objective
might not be smooth such that arg min returns a set of solutions. However, in practice,
this is unlikely to occur and it did not happen in our experiments.

4.1.3 Deriving the Target Contamination Factor

Mirroring the reasoning for setting the source threshold λS , a reasonable estimate of
the target domain’s contamination factor can be derived by looking at the proportion of
examples in the target domain with an anomaly score greater than λT

m. Theoretically,
given the target threshold λT

m ∈ [δ, 1] we should estimate the contamination factor
through the continuous score variable Tm as P

(
f
(
XT

)
≥ λT

m

)
= P

(
Tm ≥ λ

T
m

)
. However,

because in practice we can only use a finite number of examples, we estimate the
contamination factor as the discrete proportion of examples with anomaly scores
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greater than λT
m:

γ̂T
m B

∣∣∣∣{ f (x) ≥ λT
m

∣∣∣ x ∈ DT
m

}∣∣∣∣
m

=

∑m
i=1 1{ f (x)≥λT

m}
(xi)

m
(4.2)

where | · | indicates the cardinality of a set, 1 is the indicator function, f (x) is the
anomaly score of the example x ∈ DT

m and λT
m is the transferred target predictive

threshold. In the following proposition, we prove that if the target threshold λT
m is

correct, our estimator γ̂T
m is unbiased, meaning that it recovers the target domain’s true

contamination factor γT
m.

Proposition 4. Given the target threshold λT
m ∈ [δ, 1] such that P

(
YT

m = 1
)
=

P
(
Tm ≥ λ

T
m

)
, the contamination factor’s estimator defined in Eq. 4.2 is unbiased.

Proof. See the Appendix A for the formal proof. □

4.1.4 Choice of Anomaly Detection Algorithm f

In theory, TrADe can use any anomaly detection algorithm f to estimate γ̂T
m. In practice,

we find that using an ensemble of anomaly detectors yields better results.3 First, each
detector i in the ensemble produces an estimate of the target contamination factor as
described above. Then, TrADe computes the final estimate γ̂T

m as a weighted average
of each ensemble member’s estimate. The weight of each member wi is inversely
proportional to its obtained KL divergence KLi:

wi =
1

|E| − 1
×

1 − KLi(S ,Tm)∑|E|
j=1 KL j(S ,Tm)

 , (4.3)

where |E| is the number of detectors in the ensemble. This weighting scheme awards
ensemble members that produce similar score distributions for the source and target
domain.

A final pseudo-code summarizing our approach TrADe is shown in Algorithm 2.

4.2 Theoretical Convergence Analysis

Our main theoretical result is Theorem 5, which states that our approach for estimating
the contamination factor will converge to the theoretical target value in the limit. This
theorem rests on making the following two theoretical assumptions.

3We provide empirical evidence in the experimental section.
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Algorithm 2 Pseudo-code for the algorithm of TrADe.
Input: A source dataset DS of size N with contamination γS ; a target dataset DT

m of
size m; a set of anomaly detectors E = { f1, . . . f|E|}.
Output: γ̂T

m, the target contamination factor.
1: for fi in E do
2: si ← fi

(
DS

)
3: scuti ← Remove values above the (1 − γS )-th percentile from si

4: scuti ← Min-max normalize(scuti )
5: ti ← fi

(
DT

m

)
6: λT

m ← Minimizeλ∈[0,1]

(
Compute_KL(scuti , ti, λ)

)
// see Eq. 4.1

7: γT
m,i ← |{ti ≥ λ

T
m}|/m // see Eq. 4.2

8: KLi ← Compute_KL(si, ti,max ti)
9: end for

10: for fi in E do

11: wi ←
1
|E|−1 ×

(
1 − KLi∑|E|

j=1 KL j

)
// see Eq. 4.3

12: end for
13: γ̂T

m ←
∑|E|

i wi · γ
T
m,i // see Eq. 4.2

14: return γ̂T
m

Algorithm 3 Compute_KL(si, ti, λ): Compute KL for a λcut distribution.
Input: Training scores si and target scores ti; a threshold λ.
Output: KL(S , T λ

m).
1: tcuti ← Remove values above λ from ti
2: tcuti ← Min-max normalize(tcuti )
3: pS ← kde(si) // fit source kernel density estimator
4: pT ← kde(tcuti ) // fit target kernel density estimator

5: KL(S , T λ
m)←

∫ 1
0 pS (x) log(pS (x)/pT (x)) dx

6: return KL(S , T λ
m)
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Assumption 1. We assume that the score examples of the source domain are an
i.i.d. drawn from the real distribution p(S ). This is coherent with a practical setting,
where the source dataset is large enough to represent the ground truth distribution. On
the other hand, we assume that there may be some bias in the distribution of scores
p(Tm) with respect to p(T ), and that the bias gradually fades out when adding examples.
Formally, we require that, for m → +∞, tm → t uniformly in [0, 1], which means
that, for every ε > 0, there exists M ∈ N such that, for all m ≥ M and x ∈ [0, 1], the
inequality |t(x) − tm(x)| < ε holds. We also indicate this assumption by Tm → T .

Assumption 2. We assume that the normal scores distribution of the theoretical
target distribution p(T ) shares exactly the same shape as the normal scores distribution
of the source domain. Formally, we require that KL(S λS

||T λT
) = 0, where S λS

and T λT

represent the random variables of the two domains’ normal scores. This assumption is
a theoretical generalization of what Figure 4.1 shows.

Formally, our main theoretical result is stated as:

Theorem 5. Let S and Tm be two continuous random variables representing the
anomaly scores produced by an anomaly detector f on, respectively, the source (DS )
and the target (DT

m) domains. Assume that T is the random variable with the ground-
truth distribution of the target domain scores. Let γS be the contamination factor of the
source domain. Let us fix δ > 0 small enough and let λS and λT be the real predictive
thresholds of S and T . Let’s assume that s, t and tm are the positive densities of S ,
T and Tm such that tm → t uniformly in [0, 1] (Assumption 1) for m → +∞ and that
KL(S λS

||T λT
) = 0 (Assumption 2). Also, let λT

m ∈ [δ, 1] be the estimate of the target
predictive threshold through Eq. 4.1. Then,

lim
m→+∞

λT
m = λ

T .

Furthermore, let γ̂T
m be the estimate of the target contamination factor by the estimator

defined in Eq. 4.2. Then,

E
[
γ̂T

m

]
→ γT for m→ +∞.

Proof. We now sketch the proof for this theorem. The detailed proofs are in Appendix A
along with the supporting theorems used in the sketch. In order to prove the first part,
we need to motivate the transition of the limit symbol through the functions, following
these steps:

λT (i)
= arg min

λ∈[δ,1]

{
KL

(
S λS

∣∣∣∣∣∣∣∣T λ
)}

(ii)
= arg min

λ∈[δ,1]

{
KL

(
S λS

∣∣∣∣∣∣∣∣ lim
m→+∞

T λ
m

)}
(iii)
= arg min

λ∈[δ,1]

{
lim

m→+∞
KL

(
S λS

∣∣∣∣∣∣∣∣T λ
m

)}
(iv)
= lim sup

m→+∞
arg min
λ∈[δ,1]

{
KL

(
S λS

∣∣∣∣∣∣∣∣T λ
m

)}
(v)
= lim

m→+∞
λT

m.

(4.4)
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The first (i) and the last (v) equalities come from the uniqueness of the solution shown
in Theorems 13 and 14; the second step (ii) is motivated by the convergence of λcut
distributions proved in Theorem 15; the third equality (iii) holds by Theorem 16; the
fourth result (iv) is guaranteed by Theorems 17 and 18. Note that the equal in (iv) is
not an inclusion because of the uniqueness of the solution λT (shown in Theorem 14).

Once we proved that the threshold converges as expected, the second part of this
theorem focuses on the contamination factor’s convergence, which comes directly as
follows:

lim
m→+∞
E
[
γ̂T

m

] (i)
= lim

m→+∞
E


∑m

i=11{ f (x)≥λT
m}(xi)

m

 (ii)
= lim

m→+∞

∑m
i=1E

[
1{ f (x)≥λT

m}(xi)
]

m

(iii)
= lim

m→+∞

∑m
i=1E

[
1{Tm≥λ

T
m}

]
m

(iv)
= E

[
lim

m→+∞
1{Tm≥λ

T
m}

]
(v)
= E

[
1{T≥λT }

] (vi)
= P

(
T ≥ λT

)
= γT

The first equality (i) holds by our definition of the estimator (Eq. 4.2); the second
step (ii) exploits the properties of the expectation; the third equality (iii) follows from
the fact that xi is i.i.d.; the interchange between the expectation and the limit (iv)
is allowed by the theorem of dominated convergence; the result of the limit (v) is
motivated by both the assumptions of uniform convergence (Tm → T ) and the first part
of this theorem (λT

m → λT ); finally, the last step (vi) is a property of the characteristic
function. □

4.3 Experiments

Using the pseudo-code in Algorithm 2, we address the following empirical questions:

Q1. Does TrADe accurately estimate the true target contamination factor?

Q2. Does a more accurate estimate of the target contamination factor improve the
performance of the anomaly detector?

Q3. Does an ensemble of anomaly detectors produce a more accurate estimate of the
target contamination factor than a single detector f ?

Q4. How does TrADe perform when varying the source contamination factor?
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4.3.1 Experimental Setup

Methods. We compare TrADe4 against five baselines. Sourceγ simply assumes the
target contamination factor to be equal to the source contamination factor. Sourceλ first
uses an ensemble to estimate λT

m through a simple average of the ensemble members’
estimates. Then, it estimates the target contamination factor as the proportion of
target examples with anomaly score > λT

m. Coral [225] is an unsupervised domain
adaptation technique that transforms the source distribution to be similar to the target
distribution. After applying this transformation, it uses Sourceλ approach to estimate
the target contamination factor. Finally, Unify [129] and Otsu [175] are unsupervised
approaches that can be applied to the target anomaly scores. The former transforms
the anomaly scores into posterior probabilities and estimates the contamination factor
as the proportion of target examples with posterior anomaly probability > 0.5. The
latter selects the best-separating threshold by minimizing the intra-class variance and
estimates the contamination factor as the proportion of scores above the threshold.

Data. Our experiments focus on how anomaly detection can impact real-world
sustainability and security. Specifically, we look at preventing water loss, preventing
blade icing in wind turbines, and detecting IoT traffic anomalies. For the first task,
we use 12 proprietary water consumption datasets obtained in collaboration with a
large retail company.5 Each dataset contains the water consumption measured each day
during a particular hour-long segment in one of three retail stores over the course of
4.5-5 years. The measurement interval is 5 minutes. The raw consumption data of each
hour-long segment are transformed into feature-vectors.6 The goal is to detect hours
of anomalous consumption (e.g., a leak). Accurate detection of the anomalies aids
the company in preventing water losses, which can otherwise easily amount to 1000s
of litres a year. For the second task, we use two public wind turbine datasets [254].
Various measurements (e.g., wind speed, power, etc.) are collected approximately every
7 seconds for either two months (turbine 15) or one month (turbine 21). We construct
feature-vectors from the data as in the original paper, averaging over time segments
of 1 hour. The goal is to detect ice formation on wind turbine blades, which could
potentially damage the turbines and slow power production. To obtain the wind turbine
data, see the original paper [254]. For the third task, we use 9 public7 IoT datasets [162,
164]. Each dataset contains real traffic data, collected from one commercial IoT device
infected by authentic botnets in an isolated network. The features include statistics on
the stream data (e.g., source IP, MAC, channel jitter, socket), time-frame (e.g, the decay

4https://github.com/Lorenzo-Perini/TransferContamination
5The data was provided under an NDA and cannot be shared.
6We use 9 statistical (average, standard deviation, max, min, median, sum, entropy, skewness, curtosis)

and 2 binary features (whether its Friday or Sunday), 11 in total.
7https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_

BaIoT#

https://github.com/Lorenzo-Perini/TransferContamination
https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT#
https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT#
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factor), and statistics extracted from the packet stream (e.g., weight, mean, std, radius,
magnitude) for a total of 115 attributes. For computational reasons, we use a random
subsample of 2000 examples for each dataset. The Appendix A contains additional
details.

Setup. Each experiment goes as follows: (i) pick a source-target dataset pair from the
benchmark; (ii) train a separate anomaly detector on both the source and target domains
and use them to compute the anomaly scores; (iii) estimate the target contamination
factor and use it to make the target anomaly predictions; (iv) evaluate the estimated
contamination factor using the mean absolute error (MAE) and the predictions using
the F1 score; and (v) derive the average relative improvements:

MAE improvement =
MAEbaseline −MAETrADe

MAEbaseline
;

F1 improvement =
F1TrADe − F1baseline

F1baseline
.

In step (i) we do not mix the three types of datasets, as it would violate Assumption
2. For the water and wind turbines tasks, each dataset serves once as the target
domain while the remaining ones serve as a source domain yielding 12 × 11 + 2 ×
1 = 134 source-target pairs. For the IoT data, before taking a subsample we set
the target contamination factor to 0.01 and vary the source contamination factor in
[0.03, 0.05, 0.08, 0.10, 0.15, 0.20, 0.25]. This results in 9 × 8 = 72 source-target pairs.

Hyperparameters. TrADe, Sourceλ, Coral, Unify, and Otsu all use an ensemble
of 9 unsupervised anomaly detectors from different families (distance-based, statistical,
and spectral): kNNO [195], CBLOF [101], HBOS [82], SOD [130], IF [150],
COPOD [145], LODA [189], Lscp [257] with three LOF [29], and Vae [31]. Their
hyperparameters are set to the default values [220].8

TrADe uses differential evolution [222] (maxit. = 100, mut. = 0.4, rec. = 0.2) as the
optimization solver. We restrict the solution to be in the interval (0, 0.25).

Computational cost. The most expensive step of TrADe is the optimization
algorithm. For a single experiment, the CPU time is ∼ 10000 seconds. To run all
experiments, we use an internal cluster of six 24- or 32-thread machines (128 GB of
memory). The experiments finish in ∼ 24 hours.

8See Appendix A for details.
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4.3.2 Experimental Results

Error on γ MAE Ranking # times TrADe

Method Avg. ± SD Avg. ± SD W D L

Trade 0.060 ± 0.035 2.14 ± 1.04 - - -
Sourceγ 0.075 ± 0.042 2.90 ± 1.49 139 4 63
Sourceλ 0.112 ± 0.080 3.98 ± 1.60 158 6 42
Coral 0.114 ± 0.072 4.22 ± 1.54 173 1 32
Unify 0.095 ± 0.044 3.53 ± 1.55 157 2 47
Otsu 0.137 ± 0.078 4.23 ± 1.86 159 2 45

Performance F1 score Ranking # times TrADe

Method Avg. ± SD Avg. ± SD W D L

Trade 0.32 ± 0.21 2.72 ± 1.36 - - -
Sourceγ 0.29 ± 0.21 3.03 ± 1.58 994 114 746
Sourceλ 0.27 ± 0.19 3.86 ± 1.55 1249 125 480
Coral 0.27 ± 0.21 3.91 ± 1.53 1241 158 455
Unify 0.27 ± 0.19 3.87 ± 1.65 1205 143 506
Otsu 0.26 ± 0.14 3.61 ± 1.98 1154 10 690

Table 4.1: Comparison of TrADe with the baselines. The top part of the table shows
the average MAE of each method’s estimate of the target contamination factor, the
average MAE rank ± standard deviation (SD) of each method, and the number of
times TrADe wins (lower MAE), draws, and loses (higher MAE) against each baseline
(absolute differences ≤ 0.001 count as draw). The bottom part of the table shows
similar information for the F1 score, averaged over the 9 considered detectors.

Q1. Estimating the target contamination factor γT
m. Table 4.1 (top)

summarizes the results of using TrADe and the baselines to estimate the target
contamination factor in each of the 206 source-target pairs. TrADe obtains the lowest
(best) average MAE rank (computed following [51]). On average, it achieves the lowest
MAE of the target contamination factor’s estimate across all experiments. TrADe
estimates γT

m with a lower/similar error than each baseline in at least ∼ 69.5% of the
experiments.

Figure 4.2 (left) shows TrADe’s average improvement in MAE compared to the
baselines aggregated for each of the 23 target domains. Positive values imply that
TrADe achieves a lower, i.e., better, MAE. TrADe produces better average estimates
of the target contamination factor on 13 vs. Sourceγ, 17 target domains vs. Unify, 21
vs. Coral, Sourceλ and Otsu.
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Figure 4.2: Average relative improvement in MAE (left) and the F1 (right) of TrADe
versus each baseline, aggregated per target domain (x-axis). Positive values indicate
that TrADe performs better than the baseline. For each target domain, TrADe’s relative
improvement in MAE varies between 15% (vs Sourceγ) and 40% (vs Coral), while
the F1 score improves by at least 22% (vs Sourceγ) and up to 35% (vs Coral).

We perform the Friedman rank test to test the null-hypothesis that all compared methods
perform similarly [51, 112]. The obtained Friedman corrected statistic of 59 and
corresponding p-value of ≈ 10−16 allow us to reject this null-hypothesis. Applying the
Bonferroni-Dunn post-hoc test [59] with α = 5, shows that TrADe’s performance is
statistically significantly better than all the baselines.

Q2. Impact of estimating the target contamination factor correctly on
the performance of the anomaly detector. We evaluate how TrADe’s target
contamination factor estimate (and that of the baselines) affects the target detector’s
anomaly detection performance through the following experiment: (i) pick one of
the 206 source-target pairs; (ii) use TrADe or one of the baselines to estimate the
target contamination factor; (iii) compute the target anomaly scores using an anomaly
detector on the target domain; (iv) use the estimated contamination factor to convert
the anomaly scores to hard predictions and compute the F1 score. To avoid the results
being dependent on one specific anomaly detector, we repeat the experiment for each
of the 9 considered detectors resulting in 206 × 9 = 1854 experiments. We compute
the F1 score because it strictly depends on using the target contamination factor γT

m
to make hard predictions. In contrast, the AUC metrics commonly used in anomaly
detection [33], only evaluate a detector’s capability to rank examples correctly and do
not change when γT

m changes.

Table 4.1 (bottom) summarizes the results of the F1 score obtained using the target
contamination factor estimated by TrADe and the baselines in each of the 1854
experiments. TrADe has the lowest (best) average F1 rank. On average, TrADe
enables the anomaly detector to achieve higher/similar F1 scores in at least 60% of the
experiments.



68 TRANSFERRING THE CONTAMINATION FACTOR BETWEEN ANOMALY DETECTION DOMAINS
BY SHAPE SIMILARITY

Figure 4.2 (right) shows TrADe’s average improvement in F1 score compared to the
baselines aggregated for each of the 23 target domains. Positive values indicate that
TrADe obtains higher F1 scores. TrADe results in higher average F1 scores on 17
target domains vs. Otsu, 18 vs. Sourceλ, 20 vs. Unify, 21 vs. Sourceγ, and 22 vs.
Coral.

Q3. Ensemble versus single anomaly detectors. Our method uses an ensemble
of anomaly detectors to estimate the target contamination factor and set the threshold.
To see the effect of this choice, we compare TrADe using the ensemble with variants of
TrADe using only one of the nine detectors. For computational reasons, this experiment
only considers the water and wind turbine data. Compared to using a single detector,
the ensemble results in an equivalent or better estimate of the contamination factor on
between 59% (vs. IF variant) to 85% (vs. HBOS variant) of the experiments. Overall,
the ensemble variant reduces the MAE from 12% (vs. IF variant) to 50% (vs. kNNO
variant).
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Figure 4.3: TrADe’s relative improvement in MAE versus each baseline as a function
of the source contamination factor on the IoT datasets. As the gap between the source
and target contamination factors increases, TrADe performance gains versus Sourceγ,
Sourceλ, and Coral grow.

Q4. The effect of varying the source contamination factor γS . In the IoT
dataset, the target contamination is always 0.01. Therefore we explore the effect
on performance of varying the source contamination factor. Figure 4.3 reports the
TrADe’s average improvement in MAE over the baselines as a function of the source
contamination factor. Because Sourceγ and Sourceλ depend on the source γS , TrADe
achieves better results when γS increases. Compared to these methods, TrADe’s
performance is not as adversely affected by increasing the difference between the
source and the target contamination factors. Because Unify and Otsu are unsupervised
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methods using only the target domain, their estimate is constant as it does not depend
on the source contamination factor. TrADe results in (large) gains over Unify and Otsu
even for relatively large gaps between the source and target contamination factor (e.g.,
0.01 for the target and 0.10 for the source). As the gap between the source and target
contamination factor grows, TrADe win in performance vs. Unify and Otsu shrinks,
with the two baselines outperforming TrADe at the largest gaps.

Benefits and limitations. In the experiments we focused on anomaly detection
in a sustainability context (preventing water losses in retail stores and blade icing in
wind turbines) and security. The potential societal benefits, due to the more accurate
detection models, are manifested in the avoidance of potentially costly anomalies
(e.g., large water leaks). A potential downside would arise from missed detections
and false alarms, which both result in real-world costs. Moreover, one could our
approach to disadvantage or discriminate against marginalized groups, indicating them
as anomalies.

4.4 Related Work

Although no existing research attempts at transferring the contamination factor between
similar domains, two main research lines are connected to our task.

Combining transfer learning and anomaly detection. A first related research
line looks at combining transfer learning with anomaly detection in different application
domains. For instance, time series anomaly detection [244], detecting dangerous
aircraft test flight actions [246], hyperspectral image anomaly detection [143], or video
anomaly detection [14, 152]. Some authors focus on instance-transfer for anomaly
detection [235, 234], others on feature-based transfer [136, 248], or model-based
transfer [240, 111, 55]. The goal is almost always to improve a target model using
source domain label information, i.e., deriving better estimates for the anomaly scores.
However, none of these works look neither at transferring the contamination factor
between domains nor at setting a prediction threshold on the target anomaly scores.

Calibrating the anomaly scores. A second related research line revolves around
converting anomaly scores into calibrated probabilities [74]. Although calibration
usually requires either labeled examples or a known contamination factor, Kriegel et
al. Kriegel et al. [129] introduce Unify, a method to obtain calibrated probabilities
from anomaly scores without such requirements. In absence of labeled data, Marques
et al. [154] develop an internal measure to evaluate the quality of an anomaly detector,
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while Schubert et al. [208] and Perini et al. [183] develop rank similarity measures to
compare the anomaly rankings of different detectors. However, none of these works
propose a method to find an appropriate decision threshold for the anomaly scores in
an (unlabeled) dataset.

4.5 Conclusion

In this Chapter, we explored the setting where one monitors multiple different yet
related assets (e.g., a fleet of wind turbines) and wants to perform anomaly detection on
each of them. Specifically, our goal was to estimate the contamination factor of a target
domain when provided with a source dataset with a known contamination factor. Our
key insight was that the distribution of anomaly scores for normal examples in both
domains will show some similarity when derived from the same anomaly detection
algorithm. Our theoretical analysis confirmed that the contamination factor estimated
by our method TrADe converges to its true value as the size of the target dataset
increases. Through empirical experiments, we illustrated that TrADe outperforms
several baselines adapted to estimate the target contamination factor. Moreover, we
showed that a more accurate estimate yields a higher F1 score.

In the next Chapter, we investigate another setting, namely when one is given just
an unlabeled dataset. For this goal, we move from a frequentist (i.e., aiming for a
point-wise estimate of the contamination factor) to a Bayesian perspective, where the
goal becomes estimating the contamination’s posterior distribution.



Chapter 5

Estimating the contamination
factor’s distribution in
unsupervised anomaly
detection

Estimating the contamination factor γ with no domain knowledge is challenging. One
can directly threshold the scores through statistical threshold estimators, and derive γ as
the proportion of scores higher than the threshold. For instance, the Modified Thompson
Tau test thresholder (MTT) finds the threshold through the modified Thompson Tau
test [202], while the Inter-Quartile Region thresholder (IQR) uses the third quartile
plus 1.5 times the inter-quartile range [15].1

However, all existing methods rely on data-driven intuitions about the score
distributions and often the estimators are not accurate. Moreover, transforming
the scores into predictions using an incorrect estimate of the contamination
factor (or, equivalently, an incorrect threshold) deteriorates the anomaly detector’s
performance [70, 63] and reduces the trust in the detection system. If such an estimate
was coupled with a measure of uncertainty, one could take into account this uncertainty
to improve decision making. Although existing methods propose Bayesian anomaly
detectors [214, 204, 108, 102] to assign anomaly scores, none of them study how to
transform the scores into hard predictions. Therefore, this Chapter investigates the
estimation of the contamination factor from a Bayesian perspective.

1In Section 5.2 we provide a comprehensive list of threshold estimators.
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Problem Statement

The problem that this chapter addresses is the following:

Given: an unlabeled dataset D and a set of M unsupervised anomaly detectors
{ f1, . . . , fM};

Do: Estimate a (posterior) distribution of the contamination factor p(γ|S ).

Contributions of this Chapter

This chapter proposes γGMM, the first algorithm for estimating the contamination
factor’s (posterior) distribution in unlabeled anomaly detection setups. First, we use
a set of unsupervised anomaly detectors to assign anomaly scores for all samples
and use these scores as a new representation of the data. Second, we fit a Bayesian
Gaussian Mixture model with a Dirichlet Process prior (DPGMM) [65, 198] in this
new space. If we knew which components contained the anomalies, we could derive
the contamination factor’s posterior distribution as the distribution of the sum of such
components’ weights. Because we do not know this, as a third step γGMM estimates
the probability that the k most extreme components are jointly anomalous, and uses
this information to construct the desired posterior. The method is explained in detail in
Section 5.1.

In summary, we make four contributions. First, we adopt a Bayesian perspective and
introduce the problem of estimating the contamination factor’s posterior distribution.
Second, we propose an algorithm that is able to sample from this posterior. Third, we
demonstrate experimentally that the implied uncertainty-aware predictions are well
calibrated and that taking the posterior mean as point estimate of γ outperforms several
other algorithms in common benchmarks. Finally, we show that using the posterior
mean as a threshold improves the actual anomaly detection accuracy.

The content of this chapter is based on the following publication [181]:2

Perini, L., Bürkner, P.-C., and Klami, A. Estimating the contamination factor’s
distribution in unsupervised anomaly detection. In Proceedings of the Fortieth
International Conference on Machine Learning (ICML 2023), pp 27668–27679,
PMLR.

2LP provided the main body of the work (code, text), PB assisted in designing the proper Bayesian
framework, AK guided formalizing and structuring the text.
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5.1 Methodology

Learning from an unlabeled dataset has three key challenges. First, the absence of
labels forces us to make relatively strong assumptions. Second, the anomaly detectors
rely on different heuristics that may or may not hold, and their performance can vary
significantly across datasets. Third, we need to be careful in introducing user-specified
hyperparameters, because setting them properly may be as hard as directly specifying
the contamination factor.
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Figure 5.1: Illustration of the γGMM’s four steps on a 2D toy dataset (left plot): we 1)
map the 2D dataset into an M = 2 dimensional anomaly space, 2) fit a DPGMM model
on it, 3) compute the components’ probability of being anomalous (conditional, in the
plot), and 4) derive γ|S ’s posterior. γGMM’s mean is an accurate point estimate for the
true value γ∗.

We propose γGMM, a novel Bayesian approach that estimates the contamination
factor’s posterior distribution in four steps, which are illustrated in Figure 5.1:
Step 1. Because anomalies may not follow any particular pattern in covariate
space, γGMM maps the examples into an M dimensional anomaly space, where
the dimensions correspond to the anomaly scores assigned by the M unsupervised
anomaly detectors. Within each dimension of such a space, the evident pattern is that
“the higher the more anomalous”.
Step 2. We model the examples in the new space RM using a Dirichlet Process Gaussian
Mixture Model (DPGMM) [168, 198]. We assume that each of the (potentially many)
mixture components contains either only normals or only anomalies. If we knew which
components contained anomalies, we could then easily derive γ’s posterior as the sum
of the mixing proportions π of the anomalous components. However, such information
is not available in our setting.
Step 3. Thus, we order the components in decreasing order of anomalousness, and we
estimate the probability of the largest k components being anomalous. This poses three
challenges: (a) how to represent each M-dimensional component by a single value to
sort them from the most to the least anomalous, (b) how to compute the probability
that the kth component is anomalous given that the (k − 1)th is, (c) how to derive the
target probability that k components are jointly anomalous.
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Step 4. γGMM estimates the contamination factor’s posterior by exploiting such a
joint probability and the components’ mixing proportions posterior.

In the following, we describe these steps in detail.

5.1.1 Representing Data Using Anomaly Scores

Learning from an unlabeled anomaly detection dataset has two major challenges. First,
anomalies are rare and sparse events, which makes it hard to use common unsupervised
methods like clustering [29]. Second, making assumptions on the unlabeled data is
challenging due to the absence of specific patterns in the anomalies, which makes it
hard to choose a specific anomaly detector.

Therefore, we use a set of M anomaly detectors to map the d-dimensional input space
into an M-dimensional score space RM , such that a sample x gets a score s:

Rd ∋ x→ [ f1(x), f2(x), . . . , fM(x)] = s ∈ RM .

This has two main effects: (1) it introduces an interpretable space where the evident
pattern is that, within each dimension, higher scores are more likely to be anomalous,
and (2) it accounts for multiple inductive biases by using multiple arbitrary anomaly
detectors.

To make the dimensions comparable, we (independently for each dimension) map the
scores s to log(s − min(S ) + 0.01), where min(S ) is estimated taking the minimum
score over the training examples. Note that the log is used to shorten heavy right tails.
Finally, we normalize them to have zero mean and unit variance.

5.1.2 Modeling the Density with DPGMM

We use mixture models as basis for quantifying the distribution of the contamination
factor, relying on their ability to model the proportions of samples using the mixture
weights. For flexible modeling, we use the DPGMM

si ∼ N(µ̃i, Σ̃i) i = 1, . . . ,N

(µ̃i, Σ̃i) ∼ G

G ∼ DP(G0, ω)

G0 = NIW(M, λ,V, u)

where G is a random distribution of the mean vectors µi and covariance matrices Σi,
drawn from a DP with base distribution G0. We use the explicit representation G =



METHODOLOGY 75

∑∞
k=1 πkδ(µk ,Σk)(µ̃i, Σ̃i), where δ(µk ,Σk) is the delta distribution at (µk,Σk) and πk follow the

stick-breaking distribution. We set G0 as Normal Inverse Wishart [174] with parameters
M, λ,V, u common to all components. We use variational inference (VI; see e.g. Blei
et al. [26] for details) for approximating the posterior as VI is computationally efficient
and sufficiently accurate for our purposes. Alternative methods (e.g., Markov Chain
Monte Carlo [30]) could also be used but were not considered worth the additional
computational effort here.

Choice of DPGMM. DPGMM has two key properties that justify its use over other
flexible density models [87, 147]. First, we choose Gaussian distributions over more
robust heavy-tailed distributions because isolated samples are likely candidates for
outliers, and encouraging the model to represent them using the heavy tails would be
counter-productive. Second, the rich-get-richer property of DPs is desirable because
we expect some very large components of normals but want to allow arbitrarily
small clusters of anomalies. Moreover, the DP formulation allows us to refrain from
specifying the number of components K. After fitting the model, we only consider
the components with at least one observation assigned to them and propagate all the
remaining density uniformly over the active components. Thus, for the following steps
we can still proceed as if the model was a finite mixture with π following a Dirichlet
distribution.

5.1.3 Estimating the Components’ Anomalousness

We assume that each mixture component either contains only anomalous or only normal
samples. All unsupervised methods rely on some assumption on nearby samples sharing
latent characteristics, and this cluster assumption is a natural and weak assumption. If
we knew which components contain anomalies, we could directly derive the posterior of
the contamination factor γ as the sum of the mixing proportions πk of those components.
This is naturally not the case, but we need to estimate it in an unsupervised fashion.

More formally, we estimate the probability that k (out K) components are anomalous
such that we can derive γ’s posterior by averaging over all the values 0 ≤ k ≤ K. We do
this in three steps. Initially, we sort the components of score vectors in decreasing order
(by degree of anomalousness), which comes natural from the representation we made
in Step 1 (Sec. 5.1.1). Then, our insight is that the kth component can be anomalous
only if the (k − 1)th is such. This points to the estimation of conditional probabilities,
i.e., the probability of ck = “the kth component is anomalous” given ck−1. Finally, the
probability that exactly the first k components are anomalous can be obtained using
basic rules of probability theory.
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Assigning an ordering to the components. As initial step for computing the joint
probability, we need to design a decreasing ordering map for the components based on
their anomalousness. We do this in a manner that accounts for the uncertainty of the
components’ parameters to rank high the components that can be reliably identified as
anomalous: we want the means to be high but the variance low, to avoid the risk that
also samples with low anomaly scores could belong to the component.

We construct the overall ranking using dimension-specific scores because our
normalization cannot remove all statistical differences between the different detectors.
Formally, let r : RM × RM×M → R be the function of the mean vector µk and
the covariance matrix Σk that assigns a real value representing the component k’s
anomalousness. We set r as

r
(
µ(z)

k ,Σ
(z)
k

)
=

1
M

M∑
j=1

µ
j (z)
k

1 +
√
Σ

j, j (z)
k

, (5.1)

where µ(z)
k and Σ(z)

k are samples from the parameters’ posterior distributions of the kth
component. We obtain a representative value of the whole component by taking the
expected value of r, i.e. through E[r(µk,Σk)]. Equation (5.1) intentionally does not
consider inter-dimension correlations, as it remains unclear to us how those should
ideally be included and what benefits it would actually provide.

We add 1 to the component’s standard deviation for two reasons. First, if a component
contains samples with almost the same covariate values, the standard deviation would
be close to 0 and the ratio would explode towards infinity, masking any effect of the
mean. Second, adding 1 is reasonable because it is equal to the theoretical upper bound
of the components’ variances, as they are normalized (Sec. 5.1.1).

Without loss of generality, from now on we assume that the components’ index k is
ordered based on their representative value such that the kth component has a higher
value (i.e., more anomalous) than the (k + 1)th component.

Estimating the probability that the kth component is anomalous. Because
the components are sorted by anomalousness, our key insight is that the kth component
can be anomalous only if the (k − 1)th is anomalous. Formally,

P(ck | ck−1) > 0 & P(ck | c̄k−1) = 0 (1 < k ≤ K)

where c̄k−1 means “not ck−1”. Moreover, we assume P(c1) ∈ (0, 1). That is, we allow
for the data to not have anomalies (< 1) but exclude certain knowledge of no anomalies
(> 0). This is a sensible assumption because, if one knew for sure that no anomalies
are in the data, then we trivially have γ = 0, whereas we still need to allow for the data
to be free of anomalies if evidence suggests so.
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We estimate the conditional probability as

P(ck |ck−1) =
1

1 + e(ψ+δ·r(µk ,Σk)) , (5.2)

where ψ and δ are the two hyperparameters of the sigmoid function, which will be
discussed in Section 5.1.4. Note that the principle itself is not restricted to this particular
choice of functional form. One could apply any transformation that maps to [0, 1], but
the detailed derivations of the parameters would naturally be different.

Deriving the components’ joint probability. Given the conditional probability
P(ck | ck−1), the joint probability follows from simple steps. Taking inspiration from
the sequential ordinal models [32], our insight is that exactly k components are jointly
anomalous if and only if each of them is conditionally anomalous and the (k + 1)th is
not anomalous. We indicate this as C∗ = k. Essentially,

P(C∗ = k) B P(c1, . . . , ck, c̄k+1, . . . , c̄K) = P(c1)
k−1∏
t=1

P(ct+1|ct)(1 − P(ck+1|ck)) (5.3)

for any k ≤ K, where P(cK+1 |cK) = 0 by convention.

5.1.4 Estimating the Contamination Factor’s Distribution

Given the joint probability that the first k components are anomalous (for k ≤ K), the
contamination factor γ’s posterior distribution can be obtained as

p(γ|S )=
K∑

k=1

p(C∗ = k) · p

 k∑
j=1

π j

∣∣∣∣∣S
 (5.4)

where p(
∑k

j=1 π j|S ) is the posterior distribution of the sum of the first k components’
mixing proportions, p(C∗ = k) are densities WRT the counting measure. Note that
p(

∑k
j=1 π j|S ) = Beta(

∑k
j=1 ω j,

∑K
j=k+1 ω j), if p(π1, . . . , πK |S ) = Dir(ω1, . . . , ωK) [147].

Setting the sigmoid’s hyperparameters ψ and δ. Introducing new hyperparam-
eters when the task is to estimate the contamination factor γ’s posterior is risky because
setting their value may be as difficult as directly providing a point estimate of γ. Our
key insight is that we can obtain ψ and δ by asking the user two simple questions: (a)
How likely is that no anomalies are in the data? (b) How likely is it that a large number
of anomalies occurred, say, more than t = 15% of the data? Both of these values are
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supposed to be low. Let’s call p0 and phigh the two answers. Formally,

p0 = 1 − P(c1) = 1 −
1

1 + e(ψ+δ·r(µ̃1,Σ̃1))
(5.5)

phigh = P(γ ≥ t|S ) =
K∑

k=1

P(C∗ = k) · P

 k∑
j=1

π j ≥ t|S

 (5.6)

One can use a numerical solver for non-linear equations with linear constraints (e.g., the
least square optimizer implemented in SkLearn) to find the values of ψ and δ that satisfy
such constraints. The problem has a unique solution whenever phigh ≥ P(π1 ≥ t|S ).
This holds almost always in our experiments, but, in case such a constraint cannot
be satisfied, we keep running again the variational inference method (with different
starting points) for the DPGMM until the constraint on phigh holds. If this cannot
happen or does not happen within 100 iterations, we reject the possibility of too high
contamination factors and just set it to 0. In the experiments (Q5), we show that
changing the p0 and phigh does not have a large impact on γ’s posterior.

Sampling from γ’s posterior. Our estimate of the contamination factor’s posterior
p(γ|S ) does not have a simple closed form. However, we can sample from the distri-
bution using a simple process. The DPGMM inference determines an approximation
for p(π, µ,Σ|S ) and all the quantities required for Equations (5.2), (5.3), (5.4) can be
computed based on samples from the approximation. Formally, we derive a sample
from p(γ|S ) in four steps by repeating the next operations for all k ≤ K. First, we draw
a sample π(z)

k , µ
(z)
k ,Σ

(z)
k from πk (Dirichlet), µk (Normal), Σk (Inverse Wishart). Second,

we transform π(z)
k by taking the cumulative sum and obtain a sample

∑k
j=1 π

(z)
j . Third, we

pass µ(z)
k and Σ(z)

k through the sigmoid function (5.2) to get the conditional probabilities
P(ck | ck−1), and transform them into the exact joint probabilities P(C∗ = k) using the
equation 5.3. Finally, we multiply the samples following Formula 5.4 and obtain a
sample γ(z) from p(γ|S ). We show the pseudo-code of our approach in Algorithm 4.

Additional technical details. Because our method uses the variational inference
approximation, we run it 10 times and concatenate the samples to reduce the risk of
biased distributions due to local minima. Moreover, after sorting the components, we
set P(ck |ck−1) = 0 for all k > K′ = arg max{k : E[

∑k
j=1 π j] < 0.25}. This has the effect

of setting an upper bound of 0.25 to the contamination factor γ. Because anomalies
must be rare, we realistically assume that it is not possible to have more than 25% of
them. Although “0.25” could be considered a hyperparameter, this value has virtually
no impact on the experimental results. Moreover, note that E[π1] ≥ 0.25 cannot occur,
as otherwise we could not set the hyperparameters p0 and phigh.

A final pseudo-code summarizing our approach γGMM is shown in Algorithm 4.
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Algorithm 4 Pseudo-code for the algorithm of γGMM.
Input: A dataset D of size N; M unsupervised detectors f1, . . . , fM; the prior
parameters λ, V , u, ω; the hyperparameters p0 and phigh.
Output: γ(z), a sample from p(γ|S ).

1: s← [ f1(x), f2(x), . . . , fM(x)] for each x ∈ D
2: for m in [1, . . . ,M] do
3: sm ← log(sm −min{sm} + 0.01) // preprocess scores
4: end for
5: K, p(π, µ,Σ|S )← Fit_DPGMM({s}, λ,V, u, ω)
6: µ̄, Σ̄← Compute_parameters_mean(p(µ,Σ|S ),K)
7: for k in [1, . . . ,K] do
8: rk ← Compute_representative_val(µ̄k, Σ̄k) // see Eq. 5.1
9: end for

10: k1, . . . , kK ← Argsort(r1, . . . , rK , order = “descending”)
11: ψ, δ← Optimize(p0, phigh) // see Eq. 5.5, 5.6
12: π(z), µ(z),Σ(z) ← Sample(p(π, µ,Σ|S ), size = 1)
13: for ki in [k1, . . . , kK] do
14: π(z)

ki
←

∑ki
j=1 π

(z)
k j

// compute cumulative

15: r(z)
ki
← Compute_representative_val(µ(z)

ki
,Σ(z)

ki
)

16: P(cki |cki−1)← Compute_conditional_prob(ψ, δ, r(z)
ki

) // see Eq. 5.2
17: P(C∗ = ki)← Compute_joint_prob(P(cki |cki−1}) // see Eq. 5.3
18: end for
19: γ(z) ← Compute_gamma_sample({P(C∗ = k)}, {π(z)

k }) // see Eq. 5.4
20: return γ(z)

5.2 Experiments

We empirically evaluate two aspects of our method: (a) whether it accurately estimates
the contamination factor’s posterior, and (b) how thresholding the scores using our
method affects the anomaly detectors’ performance. To this end, we address the
following five experimental questions:

Q1. Is the posterior estimate sharp and well-calibrated?

Q2. How does γGMM compare to threshold estimators?

Q3. Does a better point estimate of γ improve the anomaly detector performance?

Q4. What is the impact of the number of detectors M?

Q5. How sensitive the method is to p0 and phigh?
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5.2.1 Experimental Setup

Methods. We compare the sample mean of γGMM3 with 21 threshold estimators
that we cluster into 9 groups:
1. Kernel-based. Fgd [193] and Aucp [201] both use the kernel density estimator
to estimate the score density; Fgd exploits the inflection points of the density’s first
derivative, while Aucp uses the percentage of the total kernel density estimator’s
AUROC to set the threshold;
2. Curve-based. Eb [72] creates elliptical boundaries by generating pseudo-random
eccentricities, while Wind [114] is based on the topological winding number with
respect to the origin;
3. Normality-based. Zscore [12] exploits the Z-scores, Dsn [9] measures the distance
shift from a normal distribution, and Chau [27] follows the Chauvenet’s criterion before
using the Z-score;
4. Regression-based. Clf and Regr [4] are two regression models that separate the
anomalies based on the y-intercept value;
5. Filter-based. Filter [98], and Hist [226] use the wiener filter and the Otsu’s method
to filter out the anomalous scores;
6. Statistical test-based. Gesd [8], Mcst [43] and Mtt [202] are based on, respectively,
the generalized extreme studentized, the Shapiro-Wilk, and the modified Thompson
Tau statistical tests;
7. Statistical moment-based. Boot [160] derives the confidence interval through the
two-sided bias-corrected and accelerated bootstrap; Karch [3] and Mad [11] are based
on means and standard deviations, i.e., the Karcher mean plus one standard deviation,
and the mean plus the median absolute deviation over the standard deviation;
8. Quantile-based. Iqr [15] and Qmcd [113] set the threshold based on quantiles, i.e.,
respectively, the third quartile Q3 plus 1.5 times the inter-quartile region |Q3 − Q1|, and
the quantile of one minus the Quasi-Monte Carlo discreprancy;
9. Transformation-based. Moll [122] smooths the scores through the Friedrichs’
mollifier, while Yj [200] applies the Yeo-Johnson monotonic transformations.

We apply each threshold estimator to the univariate anomaly scores of each detector at
a time. We average the contamination factors over the M detectors and use it as the
final point estimate for each dataset.

Data. We carry out our study on 20 commonly used benchmark datasets and
additionally 2 (proprietary) real tasks. The benchmark datasets contain semantically
useful anomalies widely used in the literature [33]. The datasets vary in size, number
of features, and true contamination factor. The Supplement B provides further details.
For the real tasks, our experiments focus on preventing blade icing in wind turbines.

3Code is available at: https://github.com/Lorenzo-Perini/GammaGMM

https://github.com/Lorenzo-Perini/GammaGMM
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We use two public wind turbine datasets, where sensors collect various measurements
(e.g., wind speed, power energy, etc.) every 7 seconds for either 8 weeks (turbine 15)
or 4 weeks (turbine 21). Following [254], we construct feature-vectors by taking the
average over the time segment of one minute.

Evaluation metrics. We use three evaluation metrics to assess the performance
of the methods. Contrary to all the threshold estimators, our method estimates the
posterior of γ. Therefore, we measure the probabilistic calibration of γGMM’s
posterior using a QQ-plot with the x-axis representing the expected probabilities and on
the y-axis the empirical frequencies (called reliability diagram). That is, for v ∈ [0, 0.5],

Expected Prob. = P (γ∗ ∈ [q(0.5 − v), q(0.5 + v)]) = 2v

Empirical Freq. =
|{γ ∈ [q(0.5 − v), q(0.5 + v)]}|

#experiments
,

where q(u) is the quantile at the value u of our distribution, for u ∈ [0, 1], and γ∗ refers
to the true dataset’s contamination factor. For evaluating the point estimate of the
methods, we use the mean absolute error (MAE) between the method’s point estimate
and the true value. Finally, we measure the impact of thresholding the scores using
the methods’ point estimate through the F1 score [88], as common AUC metrics are
not affected by different thresholds. Specifically, for m = 1, . . . ,M, we measure the
relative deterioration of the F1 score:

F1 deterioration =
F1( fm,D, γ∗) − F1( fm,D, γ̂)

F1( fm,D, γ̂)

where we compute the F1 score on the dataset D using the anomaly detector fm, and
either the true value γ∗ or an estimate γ̂ to threshold the scores. The F1 deterioration of
a method is (mostly) negative, and the higher the better.

Setup. In the experiments we assume a transductive setting [33, 209, 227], where a
dataset D is used both for training and testing. This is the typical setting of anomaly
detection [29, 207, 10, 151] because the absence of labels and patterns (for the anomaly
class) avoids overfitting issues.

For each dataset, we proceed as follows: (i) use a set of M anomaly detectors to assign
the anomaly scores S to each observation in the dataset D; (ii) map each anomaly
score s ∈ S to log(s −min(S ) + 0.01) and normalize them to have mean equal to 0 and
standard deviation equal to 1; (iii) either use our method to estimate the contamination
factor’s posterior and extract the posterior mean as point estimate γ̂, or use one of
the threshold estimators to directly obtain a point estimate γ̂ of the contamination
factor (see methods paragraph above); (iv) evaluate the point estimates using the
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mean absolute error (MAE) between such estimate and the true value γ∗; (v) use the
contamination factor’s point estimate to threshold the anomaly scores of each of the M
anomaly detectors fm (individually); (vi) finally, we measure the F1 score and compute
the relative deterioration.

Hyperparameters, anomaly detectors and priors. Our method introduces two
new hyperparameters: p0 and phigh. We set both of them to 0.01 as default value
because extremely high contamination, as well as no anomalies, are unlikely events.
We will experimentally check the impact of these two hyperparameters in Q5.

We use 10 anomaly detectors with different inductive biases (see Sec. 2.2.3 for
details) [220]: kNNO [10], IF [151], LOF [29], OCSVM [89], Ae [39], Vae [123],
Lscp [257], HBOS [82], LODA [189], and COPOD [145]. All these methods are
implemented in the Python library PyOD [258].

The threshold estimators are implemented in PyThresh4 with default hyperparameters.
Finally, the DPGMM is implemented in sklearn: we use the Stick-breaking
representation [60], with 100 as the upper bound of K. We set the means’ prior
to 0, and the covariance matrices’ prior to identities of appropriate dimension. We opt
for such (in our context) weakly informative priors because sensible prior knowledge
of the DPGMM hyperparameters is hard to come by in practice.

5.2.2 Experimental Results

Q1. Does our method estimate a sharp and well-calibrated posterior of γ?
Figure 5.2 shows the contamination factor γ’s posterior estimated by our method on
the 22 datasets. In several cases (e.g., WPBC, Cardio, SpamBase, Wilt, and T21),
the distribution looks accurate as γ’s true value (blue line) is close to the posterior
mean (i.e., the expected value, the green line). On the contrary, some datasets (e.g.,
Arrhythmia, Shuttle, KDDCup99, Parkinson, Glass) obtain less accurate distributions:
although γ’s true value sometimes falls on low-density regions (Arrhythmia, Shuttle),
in many cases it would be quite likely to sample the true value from our posterior
(KDDCup99, Parkinson, Glass), which makes the density still quite reliable.

Figure 5.3 shows the calibration plot. The posterior is well-calibrated as it is very close
to the dashed black line indicating a perfectly calibrated distribution. The empirical
frequencies deviate from the real probabilities by less than 5% (dark shadow grey) in
more than 76% of the cases, while never deviating by more than 10% (light shadow
grey).

4Link: https://github.com/KulikDM/pythresh.

https://github.com/KulikDM/pythresh
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Figure 5.2: Illustration of how γGMM estimates γ’s posterior distribution (red) on the
22 datasets. The blue vertical line indicates the true contamination factor, while the
green line is the posterior’s mean.
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Figure 5.3: QQ-plot of γGMM’s distribution estimate. The black dashed line illustrates
the perfect calibration, while shades indicate a deviation of 5% (dark) and 10% (light)
from the black line.
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Figure 5.4: Average MAE (± std.) of
γGMM’s sample mean compared to the
other methods. Our method has the lowest
(better) average, which is 20% lower than
the runner-up.
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Figure 5.5: F1 deterioration (mean ± std)
for each method, where the higher the better.
γGMM ranks as best method, obtaining
≈ 10% higher average than the runner-up
Qmcd.
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calibration curves of γGMM when a
different number M of detectors is used.
Colored shades report the uncertainty
obtained by randomly sampling the
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distribution.
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Q2. How does γGMM compare to the threshold estimators? We take
γGMM’s posterior mean as our best point estimate of γ and compare such value
to the point estimates obtained from the threshold estimators. Figure 5.4 illustrates
the ordered MAE (mean ± std.) between the methods’ estimate and the true γ. On
average, γGMM obtains a MAE of 0.026 that is 20% lower than the best runner-up
Mtt and 27% lower than the third best method Qmcd (MAE of 0.033 and 0.036). For
each experiment, we rank the methods from the best (position 1, lowest MAE) to the
worst (position 22, greatest MAE). Our method has the best average rank (2.13 ± 1.04).
Moreover, γGMM ranks first 8 times (≈ 36% of the cases), and for 13 times (≈ 60% of
the cases) it is in the top two. The next best method, Mtt, ranks first in 6 cases with an
average rank of 2.30 ± 1.10.

Q3. Does a better contamination improve the anomaly detectors’
performance? We use γGMM’s posterior mean as a point estimate to measure
the F1 score of the anomaly detectors because sampling from the distribution would
not imply a fair comparison against the other methods that can only provide a point
estimate. Moreover, anomaly detectors that fail to rank the samples accurately perform
poorly even when using the correct γ. Since our focus is studying the effect of γ, for
each dataset D, we compare F1 scores only over the detectors that achieve the greatest
F1 score using the true contamination factor γ∗, i.e. arg max fm {F1( fm,D, γ∗)}. The
Supplement B contains the list of detectors used for each experiment.

Figure 5.5 shows the average (± std.) deterioration for each of the methods. On
average, γGMM has the best F1 deterioration (−0.117 ± 0.228) that is around 10%
better than the runner-up Qmcd (−0.131 ± 0.238), and 58% better than the next best
Karch (−0.279 ± 0.248). For 25% of the cases we get a higher F1 score with γGMM
than when using the true γ∗. This is due to the (still incorrect) ranks made by the
detectors, which achieve better performance with slightly incorrect contamination
factors. The Supplement B provides further details on how the methods perform in
terms of false alarms and false negatives.

Q4. What is the impact of M on γ’s posterior? In the previous experiments,
we used M = 10 detectors. We evaluate the effect of M by running all the experiments
10 times with (different) randomly chosen detectors for M = 3, 5, 7. Figure 5.6 shows
that the calibration suffers if using fewer detectors, but already M = 5 let the method
work fairly well. The variance of the results (over repeated experiments) also increases
for lower M.

Q5. Impact of the hyperparameters p0 and phigh. We evaluate the impact of p0
and phigh by running the experiments with smaller and larger values than 0.01: we vary,
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one at a time, p0, phigh ∈ [0.0001, 0.001, 0.05, 0.1] and keep the other set as default.
Figure 5.7 shows the QQ-plot for p0 (left) and phigh (right). In both cases, smaller
hyperparameters lead to slightly under-estimated expected probabilities. Overall, our
method is robust to different values of p0, while phigh affects the calibration slightly
more. Comparing the resulting 8 variants of γGMM in terms of MAE, we conclude
that the posterior means produce similar values to our default setting, obtaining an
MAE that varies from 0.252 (phigh = 0.001, the best) to 0.32 (p0 = 0.0001, the worst).

5.3 Conclusion

In this Chapter, we investigated how to estimate the contamination factor from a
Bayesian perspective, namely how to derive its posterior distribution. For this task, we
introduced γGMM, which works in four steps: (i) it creates an M dimensional score-
based representation of the training examples by using M anomaly detectors, (ii) it fits
a DPGMM on such representation, (iii) it computes the probability that a component of
the DPGMM is anomalous, and (iv) it derives the posterior of the contamination factor
by leveraging such probabilities and the DPGMM’s weights distributions. By running
experiments on 22 benchmark and real-world datasets, we showed that (1) γGMM’s
posterior distribution is well calibrated, and (2) using γGMM’s posterior mean as a
point-wise estimate effectively yields more accurate contamination factors than most
baselines. Moreover, we proved that better estimates of γ yield better thresholds being
picked, which, in turn, improve the performance of an anomaly detector (F1 score).

Setting the threshold using the contamination factor introduces uncertainty in the
model’s predictions. That is, because the value of the threshold strictly relates to the
training anomaly scores, slight changes in the training set yield different thresholds
being set. As a consequence, some (test) predictions ŷ may flip, even for the same
example x. In the next Chapter, we investigate this phenomenon and propose to quantify
such uncertainty, which we call stability.



Chapter 6

Quantifying an anomaly
detector’s example-wise
stability

Being the anomalies rare and unpredictable, learning a reliable unsupervised anomaly
detector is challenging. Hypothetically, even if we could collect multiple datasets,
each one would contain distinct anomalies to which the anomaly detectors would
assign different scores. Additionally, small perturbations in the training data might
cause (large) differences in an example’s anomaly score and, consequently, a different
prediction. Consider the three one-dimensional toy datasets in Figure 6.1. The middle
row plots show the continuous anomaly scores that kNNO and IF assign to each
example in the distributions. These scores change as a result of small perturbations in
the dataset, ultimately resulting in different predictions.

Problem Statement

The problem that this chapter addresses is the following:

Given: An unlabeled dataset D with N examples, the contamination factor γ ∈ [0, 1]
and an anomaly detector f ;

Do: Design a stability metric S that captures how the example-wise predictions of f
change under slight perturbations of D.

87
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Figure 6.1: Illustration of why interpretable scores are important on three 1D toy
datasets. The top plots show the data distributions under small perturbations. The
middle plots show the anomaly scores assigned by kNNO and IF. These two models
produce non-standard scores, which are difficult to interpret and compare. The bottom
plots show the corresponding stability scores computed using our method. Small
changes in the data distribution affect anomaly scores and predictions. The stability
scores capture clearly where the models (dis)agree. The dips in the stability scores
correspond to a transition in the predicted label of the underlying model.

Contributions of this Chapter

This Chapter tackles this challenge by providing a measure of how stable an anomaly
detector’s predictions are on an example-wise basis. The measure will allow a user to
assess the reliability of anomaly detectors in different scenarios.

In summary, we make the following four contributions. First, we propose a notion
of a stability measure that captures how consistent a model’s prediction would be
for that example if the training data were perturbed. Second, we propose ExCeeD
(EXample-wise ConfidEncE of anomaly Detectors), an approach that is able to compute
our stability metric for any anomaly detector that produces a real-valued anomaly score.
The method begins by transforming the anomaly scores to outlier probabilities using
a Bayesian approach. Then, it uses these probabilities to derive the example-wise
stability scores. Third, we perform a theoretical analysis of the convergence behaviour
of our confidence estimates. Fourth, we perform an extensive empirical evaluation on
21 benchmark datasets.

The content of this chapter is based on the following publication [187]:1

Perini, L., Vercruyssen, V., and Davis, J. Quantifying the confidence of anomaly
detectors in their example-wise predictions. In Proceedings of the Joint European
Conference on Machine Learning and Knowledge Discovery in Databases (ECML-
PKDD 2020), pp 227–243, Springer.

1LP provided the main body of the work (code, theory, text), VV assisted with experiments and nailing
down the right research questions, JD guided formalizing and structuring the text.
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6.1 Methodology

Using an anomaly detector in practice requires converting its returned anomaly score
into a hard prediction. Typically, this is done by setting a threshold λ on the scores.
Then, any example x with a score s > λ will be classified by the model as an anomaly.
Hence, perturbing the training data would lead to a different threshold being picked,
which in turn would affect an example’s predicted class.

To capture this potential uncertainty, we propose a notion of a detector’s example-wise
stability in its predictions, which works with any anomaly detector producing real-
valued scores. Intuitively, we can think of example-wise stability as the probability
that a detector’s prediction would change if a different dataset was observed. More
formally, we define it as follows.

Definition 5 (Example-wise Stability). Let f be the anomaly score function that maps
examples to anomaly scores. Given an unlabeled dataset D, the model’s stability for
an example x with anomaly score s = f (x) is defined as

S (Ŷ)x =

P(Ŷ∗ = 1 | s,N, γ, p̂s) if Ŷ = 1
1 − P(Ŷ∗ = 1 | s,N, γ, p̂s) if Ŷ = 0

(6.1)

where P is the probability computed over the possible datasets D∗ with N examples,
Ŷ∗ refers to the prediction label when the model is trained on D∗, p̂s is the estimated
outlier probability (i.e., the probability that the example belongs to the anomaly class),
and γ is the expected proportion of positive examples.

From now on, when we use the term stability we will refer to P(Ŷ∗ = 1 | s,N, γ, p̂s),
as the case when Ŷ = 0 is directly computable from the previous one. Hence, when
Ŷ = 1, high values of P(Ŷ∗ = 1 | s,N, γ, p̂s) indicate that model is stable in its prediction
that the example is an anomaly. One would expect stability values around 0.5 when
an example is near the decision boundary, that is on the border between normal and
abnormal behaviors. We estimate the stability in two steps. First, we employ a Bayesian
approach to estimate the distribution of anomaly scores. This allows us to derive an
example’s outlier probability p̂s. Second, we use the outlier probability to estimate the
stability of the anomaly detector by considering how the combination of the observed
training set and contamination factor γ would be used to select the threshold λ for
converting anomaly scores into predictions.

Definition 6 (Outlier Probability). Given an anomaly detector f , for any example
x ∈ Rd we define the outlier probability of x as the probability that x is anomalous
according to its anomaly score s = f (x)

P(Y = 1| f (X) = f (x)) = P(Y = 1|S = s) B P(S ≤ s). (6.2)
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Subsequently, the probability that one example is normal can be computed as

P(Y = 0| f (X) = f (x)) = 1 − P(Y = 1|S = s) = P(S > s).

6.1.1 A Bayesian Approach for Assigning Outlier Probability

Our goal is to infer the true class label based on the anomaly score. Formally, for any
score s ∈ R, we can model the example’s true class given the score as the conditional
random variable Y |S = s. Based on this framework, we can estimate an example’s
outlier probability (i.e., the probability it belongs to the anomaly class) as follows:

Ps B P(Y = 1|S = s) = P(S ≤ s).

Because Y |S = s takes values in the set {0, 1}, we model its outcome using a Bernoulli
distribution:

Y |S = s ∼ Bernoulli(Ps)

where Ps is the probability of success. If we knew S ’s distribution, we could compute
P(S ≤ s) – the probability that an example belongs to the anomaly class –using the
cumulative distribution function of S . Unfortunately, the distribution of S is usually
unknown which makes it infeasible to directly approximate Ps.

Our solution is to take a Bayesian approach to this problem. The key insight is to
measure the area of {S < s} by drawing samples from the real distribution. We will
view Ps as a random variable and assume a uniform prior. Theoretically, we can derive
the probability that an example belongs to the anomaly class as follows. First, we draw
one example a from the distribution of S , which simply entails drawing an example x
from X and computing its anomaly score a = f (x). Second, we record the event as a
success (i.e., b = 1) if a ≤ s and as failure (i.e., b = 0) otherwise. We repeat the process
N times and record the total number of successes as t and failures as N − t. In fact, the
rate between successes and trials, corrected with other factors, will approximate the
outlier probability as defined in formula 6.2. Thanks to Bayes’s rule we can use the
following theorem [66].

Theorem 6 (Fink [66]). Assume that a random variable Ps follows a Beta distribution
Beta(α, β) as prior. Given the events b1, . . . , bN , which are i.i.d. examples drawn from
a Bernoulli random variable Bernoulli(Ps), then the posterior distribution of Ps is still
a Beta distribution with new parameters Beta (α + t, β + N − t), where t =

∑N
i=1 bi is

the number of successes.

Proof. According to the hypotheses, the prior distribution of Ps has density

p(q) =
qα−1(1 − q)β−1

B(α, β)
,
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where B(α, β) is the Euler beta function. So, by using the Bayes’s rule

p(q|b1, . . . , bt) =
p(q) · p(b1, . . . , bt |q)∫ 1

0 p(r) · p(b1, . . . , bt |r) dr
=

qα−1(1−q)β−1

B(α,β) · qt (1 − q)N−t∫ 1
0

rα−1(1−r)β−1

B(α,β) · rt (1 − r)N−t dr

=
qα+t−1 (1 − q)β+N−t−1∫ 1

0 rα+t−1 (1 − r)β+N−t−1 dr
=⇒ Ps|b1, . . . , bt ∼ Beta (α + t, β + N − t)

where t =
∑N

i=1 bi, p(q|b1, . . . , bN) is the posterior distribution of Ps after i.i.d. sampling
N Bernoulli(Ps) examples, and p(b1, . . . , bN |q) is the likelihood. □

In our setting we assume a uniform prior, i.e. that Ps ∼ Beta(1, 1) = Uni f (0, 1). As a
result, the posterior distribution of Ps is still a Beta distribution

Ps|b1, . . . , bN ∼ Beta (1 + t, 1 + N − t) . (6.3)

In order to derive an estimate of the outlier probability from Ps, we take the expectation
of Ps. Since the posterior distribution is known from (6.3), its expectation can be
obtained as a function of the parameters:

p̂s B E[Ps|b1, . . . , bN] =
1 + t
2 + N

. (6.4)

In practice, we cannot sample from the true distribution and instead need to use the
training scores {s1, . . . , sN} to infer the posterior distribution. Thus, when drawing an
example, we are restricted to sampling from the dataset. This limits us to drawing
N examples, that is, the total number of examples in the dataset. An additional
consideration concerns the value of t. It represents the number of successes when
sampling from Y |S = s ∼ Bernoulli(Ps). As a result, t is a practical approximation of
the real percentage θ of successes times the number of trials N

t ≈ θ · N. (6.5)

The reason why we use t is to obtain a corrected estimate of the real parameter θ, which
would be the exact probability value of Y |S = s if it were known.

6.1.2 Deriving a Detector’s Stability in its Predictions

Although the second step of our framework works with any approach that converts
anomaly scores into outlier probabilities, here p̂s refers to the definition in Equation 6.4.
Deriving the stability value requires estimating the proportion of times that an example
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will be predicted as being anomalous by the chosen anomaly detection algorithm.
This requires analyzing how to set the threshold λ for converting anomaly scores to
predictions. Typically, anomaly detectors exploit the contamination factor γ to pick
the threshold λ. Note that γ may be known from domain knowledge (e.g., historical
anomaly rates) or it can be estimated from partially labeled data (see Section 3). There
are two different scenarios:

γ ∈ (0, 1): The training set contains some anomalies. Here, the standard approach
is to compute the expected number of anomalies in the training set as k = γ×N.2

Then, it ranks the training examples by their anomaly scores and sets the threshold
to be the value in position k.

γ = 0: The training set contains only normal examples. In this case, the threshold
has to be equal to the maximum anomaly score in the training set. Picking a
lower value would result in a false positive on the training data.

In both cases, the chosen threshold depends on the distribution of anomaly scores
in the training set. In turn, these scores depend on the available data sample. That
is, if we drew another training set from the population, the chosen threshold may
change. This leads to our key insight: the task of measuring the model’s stability
can be formulated as estimating the probability that an example with score s will be
classified as an anomaly based on a theoretical sample {s1, . . . , sN} drawn from the
population. Formally, given the training set size N and the contamination factor γ,
we want to compute the probability that an example x with score s = f (x) and outlier
probability p̂s will be classified as an anomaly when randomly drawing a training set
of N examples from the population of scores. In practice, the stability can be seen as
the probability that the chosen threshold λ value will be less than or equal to the score
s. This probability depends on our two cases for picking the threshold:

Contamination factor γ ∈ (0, 1). In this case by drawing theoretically from the
Bernoulli distribution of Y |S = s with parameter Ps, we should get at least N − k + 1
successes to classify s as anomaly, where k = γ × N and “success” means that the
drawn value is lower than s. As a result, our stability is defined as:

P(Ŷ∗ = 1 | s,N, γ, p̂s) =
N∑

i=N(1−γ)+1

(
N
i

)
p̂i

s(1 − p̂s)N−i (6.6)

where p̂s = E[Ps|b1, . . . , bN], which is estimated using our Bayesian approach for
computing an example’s outlier probability (see Equation 6.4). Hence, our stability
estimate explicitly relies on our outlier probability.

2We assume that k ∈ N, taking the floor function when needed.
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Contamination factor γ = 0. In this case, the threshold is the maximum score in
the training set, λ = max{si}

N
i=1. We need to compute the probability that an example

with score s and outlier probability p̂s will be classified as an anomaly when randomly
drawing N examples from the normal population. It is quite similar to the previous
case, with the only difference being that no failures3 are allowed. So, when γ = 0 we
need to denote the stability as

P(Ŷ∗ = 1 | s,N, 0, p̂s) = ( p̂s)N (6.7)

where again p̂s = E[Ps|b1, . . . , bN] comes from our Bayesian estimate of the example’s
outlier probability (see Equation 6.4.)

The pseudo-code in Algorithm 5 shows our method in a summary.

Algorithm 5 Pseudo-code for the algorithm of ExCeeD.
Input: A dataset D of size N with contamination factor γ; an unsupervised detector f ;
a test example x∗.
Output: Sx∗ , the detector’s stability on x∗.

1: s← f (D) // training anomaly scores
2: λ← Set_decision_threshold({s}, 1 − γ)
3: s∗ ← f (x∗) // test anomaly score
4: t = |{s ≤ s∗}|
5: p̂s ← Compute_outlier_prob(t,N) // see Eq. 6.4
6: if γ > 0 then
7: Sx∗ = Compute_stability( p̂s, γ,N) // see Eq. 6.6
8: else
9: Sx∗ = Compute_stability(p̂s,N) // see Eq. 6.7

10: end if
11: if s∗ < λ then
12: Sx∗ = 1 −Sx∗

13: end if
14: return Sx∗

6.2 Convergence Analysis of our Stability Estimate

This section analyzes the behavior of our stability estimate. In particular, given a fixed
anomaly score s for a test example, we want to investigate how our stability in the
model’s prediction changes as the number of training examples tends towards infinity.

3A failure would correspond to a training example having a higher anomaly score than the chosen
threshold. Given the assumption that all training examples are normal, this would indicate a false positive.
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We would expect that as the size of the training set increases, our stability estimate
should converge. Again, we analyze the two cases based on whether or not the training
set contains any anomalies.

6.2.1 Convergence Analysis when γ ∈ (0, 1)

In this case, when we set the threshold based on a fixed set of training scores {s1, . . . , sN},
we can derive our stability for a test example with score s by merging Eq. 6.4 and
Eq. 6.6:

P(Ŷ∗ = 1|s,N, γ, p̂s) =
N∑

i=N(1−γ)+1

(
N
i

) (
1 + t
2 + N

)i (1 + N − t
2 + N

)N−i

(6.8)

where t represents the successes in the Bayesian learning phase (section 6.1.1).

This leads to the question: how does the stability about the class prediction for a score
s behave as the number of training examples N goes towards +∞? In order to formally
analyze this, we rewrite Eq. 6.8 as

P(Ŷ∗ = 1|s,N, γ, p̂s) = FT (N) − FT (N − γN)

where the sum in Eq. 6.8 is the cumulative distribution of a binomial random variable
T ∼ B(N, γN, p̂s) with N trials, γN successes, and probability p = p̂s. When N
increases, the central limit theorem yields [67]:

P

 T − N p̂s√
N p̂s(1 − p̂s)

≤ c

→ Φ(c) for N → +∞, ∀c ∈ R.

Consequently, assuming that N is large enough, we assert that, ∀c ∈ R [221],

P (T ≤ c) = FT (c) ≈ Φ

 c − N p̂s + 0.5√
N p̂s(1 − p̂s)

 ,
where +0.5 is a correction due to the continuity of the Gaussian variable. Thus, the
stability can be approximated by the cumulative distribution function of a Gaussian
variable T ∗ with mean µ = N p̂s + 0.5 and variance σ2 = N p̂s(1 − p̂s),

T ∗ ∼ N(N p̂s + 0.5,N p̂s(1 − p̂s)).
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Therefore:

P(Ŷ∗ = 1|s,N, γ, p̂s) = FT (N) − FT (N − γN)

≈ Φ

N − N p̂s + 0.5√
N p̂s(1 − p̂s)

 − Φ N(1 − γ) − N p̂s + 0.5√
N p̂s(1 − p̂s)


= P (N(1 − γ) ≤ T ∗ ≤ N) = P

(
(1 − γ) ≤

T ∗

N
≤ 1

)
.

Next, we analyze the behaviour of T ∗
N as N → ∞ in order to interpret the final result.

Since N ∈ N, it still follows a normal distribution with new parameters:

E

[
T ∗

N

]
=

1
N
E[T ∗] = p̂s −

1
2N
=

1 + t
2 + N

−
1

2N
;

Var
[
T ∗

N

]
=

1
N2 Var[T ∗] =

p̂s(1 − p̂s)
N

=
1 + N − t
N(2 + N)

.

Since the mean and the variance of T ∗
N are bounded (they both are decreasing sequences

when N increases), the sequence of Gaussian random variables T ∗
N converges in

distribution to a Gaussian random variable parameterized by the limit of the mean and
the limit of the variance, respectively:

lim
N→∞
E

[
T ∗

N

]
= θ, lim

N→∞
Var

[
T ∗

N

]
= 0,

where θ is defined in Eq. 6.5. Hence, when N → +∞, the limit random variable is
normally distributed with mean θ and variance 0, which means the only value it assumes
is θ, the true outlier probability (see the end of Section 6.1.1). Formally, calling the
limit degenerate random variable θ∗,

lim
N→∞
P(Ŷ∗ = 1|s,N, γ, p̂s) = P ((1 − γ) ≤ θ∗ ≤ 1) .

Intuitively, this means that as the number of training examples goes to infinity the
population is perfectly estimated and represented by the sample, which yields two
cases. In the first case, the true outlier probability θ is greater than 1 − γ. Roughly
speaking, the expected proportion of normal examples (1 − γ) is not high enough to
yield a threshold value less than the considered score s. Hence, the stability will be 1,
because P ((1 − γ) ≤ θ∗ ≤ 1) = 1 since θ∗ takes the constant value θ and the inequalities
are satisfied. In contrast, in the second case the inequalities are not respected, meaning
that θ does not fall inside the interval [1 − γ, 1]. Hence, in this scenario the proportion
of normal examples is such that the value of the threshold must be greater than s and,
as a result, the stability is 0 when predicting class 1.
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At the end, the limit of the stability that s is predicted to be an anomaly is

lim
N→∞
P(Ŷ∗ = 1|s,N, γ, p̂s) =

1 if θ ≥ 1 − γ;
0 if θ < 1 − γ.

This corresponds to our intuition of what should occur when given an infinite number
of training examples.

6.2.2 Convergence Analysis when γ = 0

In this analysis, the main hypothesis is that the training set only contains normal
examples, which corresponds to learning a one-class model. Hence, only a
representative sample of the normal class can be used to train the model.

The problem we tackle is: Given a true anomaly with score s∗, how stable will the
model be in predicting that it belongs to the anomaly class? Our intuitions might be
misleading in this case. In fact, since the contamination factor is 0, the threshold will
be set as the highest observed score in the training set and the definition of stability
slightly changes. In this case no failures are allowed (i.e., all training examples must
have a score less than the chosen threshold), once one training example has a score
greater than s∗, this implies that the chosen threshold will be greater than s∗ as well. In
practice, if s∗ is always greater than or equal to the anomaly score for each training
example, the model will always predict that the test example is anomalous but its
stability might not be so high. The reason is simple: since the sample of training scores
{s1, . . . , sN} represents the normal class, the model cannot learn from the anomalies. So,
drawing a normal example with a high anomaly score is theoretically possible. Hence,
for a fixed anomalous test example, we need to analyze how the model’s stability in its
prediction for the example changes as the number of normal examples in the training
increases.

Theorem 7. Given a set of training scores {s1, . . . , sN} and a score s∗ such that si < s∗

∀i ≤ N, fixed γ = 0, the expected rate of anomalies in {s1, . . . , sN}, then

P(Ŷ∗ = 1|s∗,N, γ = 0, p̂s∗ ) −→
1
e
≈ 0.368 for N → +∞.

Proof. Assuming that {s1, . . . , sN} contains no anomalies, we get t = N successes. This
yields an outlier probability of:

p̂s∗ = E[Ps∗ |b1, . . . , bt] =
1 + t
2 + N

=
1 + N
2 + N

.

Then, using the estimated probability that one score is less than or equal to s∗, we can
compute the stability using the hypothesis that the contamination factor in the training
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set is 0, meaning that no failures are allowed:

P(Ŷ∗ = 1|s∗,N, γ = 0, p̂s∗ ) = ( p̂s∗ )N .

In fact, if we drew a score greater than s∗ from the training set, then the threshold
would be greater than s∗ (predicted class equal to 0). Let’s now analyze the limit:

lim
N→+∞

P(Ŷ∗ = 1|s∗,N, γ = 0, p̂s∗ ) = lim
N→+∞

( p̂s∗ )N = lim
N→+∞

(
1 + N
2 + N

)N

= lim
N→+∞

(
2 + N − 1

2 + N

)N

= lim
N→+∞

(1 + −1
2 + N

)2+N (
1 + N
2 + N

)−2 = 1
e
,

where the first factor is a notable limit and converges to 1
e , whereas the second term

converges to 1 because of the rate of polynomials of degree 1. □

This can be understood as follows. While the outlier probability for a true anomaly
goes to 1 when N → +∞, the number of normal examples in the training data also
increases. Thus, we are more likely to observe unlikely events, i.e., the training set
containing a normal example with a high anomaly score.

6.3 Experiments

The goal of our empirical evaluation is to: (1) intuitively illustrate how our stability
score works; (2) evaluate the quality of our stability scores; and (3) assess the effect of
using our Bayesian approach for converting anomaly scores to outlier probabilities on
the quality of the stability scores.

6.3.1 Experimental Setup

Our experimental goal is to evaluate ExCeeD’s ability to recover the example-wise
stability of an anomaly detector as opposed to evaluating predictive performance or
quality of calibration [180]. Hence, metrics like the AUROC or Brier score are not
suitable for assessing how small perturbations in the training data affect the example-
wise predictions of the detector. For instance, AUROC would treat models that flipped
the positions of two anomalies (normals) in the ranking produced by each model as
being equivalently performant. In contrast, we are explicitly interested in understanding
the number and magnitude of such flips. Moreover, our approach for converting the
anomaly score to an outlier probability is a monotone function and hence does not
affect the AUROC of the model. We consider a stability score to be good if it accurately
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Dataset N d γ Dataset N d γ

ALOI 12384 27 0.030 PenDigits 9868 16 0.002
Annthyroid 7129 21 0.075 Pima 625 8 0.200
Arrhythmia 450 259 0.457 Shuttle 1013 9 0.013
Cardiotocography 1734 21 0.050 Spambase 3160 57 0.200
Glass 214 7 0.042 Stamps 340 9 0.091
HeartDisease 270 13 0.444 Waveform 3443 21 0.029
Hepatitis 80 19 0.163 WBC 454 9 0.022
Ionosphere 351 32 0.359 WDBC 367 30 0.027
Lymphography 148 19 0.040 Wilt 4655 5 0.020
PageBlocks 5473 10 0.102 WPBC 198 33 0.237
Parkinson 60 22 0.200

Table 6.1: The 21 benchmark anomaly detection datasets from [33] and their
characteristics: number of examples (N), number of features (d), and contamination γ.

captures the consistency with which a detector predicts the same label for an example.
Hence, we expect a detector to predict for all examples subject to a stability value of
S (Ŷ)x the same label S (Ŷ)x-percent of the time when retraining the detector multiple
times with slightly perturbed training datasets. Therefore, we propose a novel method
for evaluating an anomaly detector’s example-wise stability as an indication of how
consistently it predicts the same label for that example. The method (1) draws 1000
sub-samples from the training data with the size of each sub-sample randomly selected
in [0.2 ·N,N], (2) trains an anomaly detector on each sub-sample, (3) uses each detector
to predict the class labels of every example in the test set, and finally (4) computes for
each test example x the frequency Fx with which the detector predicted the same class.

We carry out our study on a benchmark consisting of 21 standard anomaly detection
datasets from [33]. The datasets vary in size, number of features, and proportion of
anomalies (Table 6.1). Given a benchmark dataset, we can now evaluate our stability
scores as follows. First, we split the dataset into training and test sets with stratified
5-fold cross-validation. Then, we take the class-weighted average of the L2 differences
between the stability score S (Ŷ)x and the earlier computed frequency Fx of each test
set example x, yielding:

error(S , F) =
1

2|TN |

∑
x∈TN

(
S (Ŷ)x − Fx

)2
+

1
2|TA|

∑
x∈TA

(
S (Ŷ)x − Fx

)2

where TN are the true test set normals and TA the true test set anomalies. We take a
class-weighted average because the large class-imbalances that characterize anomaly
detection datasets, would otherwise skew the final error. We report averages over the
folds. The underlying anomaly detector is either kNNO, IF, or OCSVM. This results
in 21 × 3 = 63 experiments for each method. We compare 9 approaches, which can be
divided into three categories:
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Our method. ExCeeD as introduced in Section 6.1.4

Naive baselines. ExCeeD-m, this is ExCeeD with a different prior distributionBeta(γ ·
m,m · (1 − γ)) where γ is the contamination factor and m is such that γ · m = 10
(suggested in [250]). A Baseline approach which assumes the stability scores to
be equal to the model’s predictions.

Outlier probability methods. The Unify [129], linear, and squash methods for
estimating the outlier probabilities p̂s from anomaly scores. These probabilities
are not stability scores. To obtain true stability scores, we have to combine each
of these methods with the second step of our framework, yielding ExCeeD-Unify,
ExCeeD-Linear, and ExCeeD-Squash.

Calibration methods. The Logistic [190], Isotonic [251], and Beta [135] methods
to empirically estimate calibration frequencies. Although these methods do
not compute stability scores, probabilistic predictions are often (incorrectly)
interpreted as such and therefore included for completeness.

Method error(S , F) rank # times ExCeeD error(S , F)

Mean ± SD Wins Loses Draws Mean ± SD ×102

ExCeeD 1.429 ± 0.844 - - - 1.972 ± 2.637
Baseline 2.270 ± 0.641 52 3 8 2.679 ± 2.931
ExCeeD-Unify 4.103 ± 2.040 55 2 6 15.13 ± 16.29
Isotonic 5.151 ± 1.482 59 2 2 17.92 ± 13.68
Beta 5.421 ± 1.285 62 0 1 23.13 ± 29.65
Logistic 5.532 ± 1.525 62 0 1 23.89 ± 29.69
ExCeeD-m 5.937 ± 2.709 59 1 3 24.95 ± 37.38
ExCeeD-Linear 6.802 ± 1.350 61 2 0 31.47 ± 23.15
ExCeeD-Squash 8.357 ± 1.271 61 2 0 45.97 ± 36.67

Table 6.2: Comparison of ExCeeD with the baselines. The table shows: the weighted
average error(S , F) rank ± standard deviation (SD) of each method; the weighted
average error(S , F) ± SD of each method (computed as in [51]); and the number of
times ExCeeD wins (lower error), draws, and loses (higher error) against each baseline.

6.3.2 Experimental Results

To illustrate the intuition behind our approach, Figure 6.2 compares how the stability
scores computed by the different methods evolve as we gradually move an example
from the large normal central cluster to the small anomaly cluster in the bottom right
(using kNNO). For ExCeeD, the stability scores start out high when the example is

4Implementation available in PyOD: https://pyod.readthedocs.io.html.

https://pyod.readthedocs.io.html
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close to the cluster of normal points and the prediction is 0 (i.e., normal). The stability
gradually decreases as the example moves away from the normal cluster, eventually
reaching about 50% when it is halfway between the normal and abnormal clusters.
Once the example is far enough away from the normal cluster, the stability increases
again as the model changes its prediction and becomes more certain that the example
is anomalous. Using ExCeeD with its Bayesian outlier probability clearly captures the
gradual change in stability we would intuitively expect in this scenario.

Question 1: Does ExCeeD produce good stability scores? Table 6.2 summarizes the
comparison between ExCeeD and the baselines in terms of error(S , F). Our method
outperforms all baselines and has the lowest average error rank over the 63 experiments.
It also achieves lower errors in at least 54 of the 63 experiments compared to every
other method and achieves the lowest weighted average error. When the results are
split out per underlying anomaly detector (Table 6.3), ExCeeD still outperforms all
baselines, winning against each baseline at least 20, 18 and 13 out of 21 times when
the detectors are, respectively, kNNO, IF and OCSVM.

Question 2: Does the Bayesian approach to estimate outlier probabilities
contribute to better stability scores? Our stability score can be computed from
any outlier probability measure. To evaluate specifically how our proposed Bayesian
approach for estimating the outlier probabilities contributes to the stability scores,
we simply compare ExCeeD with the ExCeeD-Unify, ExCeeD-Linear, and ExCeeD-
Squash baselines. The results are summarized in Tables 6.2 and 6.3. The Bayesian
subroutine of ExCeeD to compute the outlier probabilities outperforms the three
baselines by a substantial margin, obtaining lower errors in respectively 55, 61, and 61
out of 63 experiments, indicating its effectiveness.

Method kNNO: # of IF: # of OCSVM: # of

W D L W D L W D L

ExCeeD - - - - - - - - -
Baseline 21 0 0 18 0 3 13 3 5
ExCeeD-Unify 21 0 0 18 0 3 16 2 3
Isotonic 20 0 1 21 0 0 18 2 1
Beta 21 0 0 21 0 0 20 0 1
Logistic 21 0 0 21 0 0 20 0 1
ExCeeD-m 20 0 1 19 0 2 20 1 0
ExCeeD-Linear 21 0 0 21 0 0 19 2 0
ExCeeD-Squash 21 0 0 21 0 0 19 2 0

Table 6.3: Comparison of ExCeeD with the baselines, split out per anomaly detector
(kNNO, IF, and OCSVM). The table presents the number of times ExCeeD wins (W)
i.e. lower error, draws (D), and loses (L) i.e. higher error vs. each baseline.
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Figure 6.2: Illustration of how moving an example along the purple arrow in the dataset
(left plot) affects its outlier probability (bottom-right plot) and its stability score derived
from this probability (top-right plot). The underlying anomaly detector is kNNO. Left
of the vertical black line, the detector predicts that the example belongs to the normal
class. Because at first the example is embedded in the cluster of normal examples (the
green points in the dataset), the initial stability score is high. However, the detector’s
stability in its prediction decreases as the example moves away from the normal points.
Finally, it increases again when the example nears the anomalies (the red points) and
the example is predicted to be an anomaly. ExCeeD’s stability score captures our
intuitions that the prediction should be stable (i.e., stability score near 1.0) when the
example is very obviously either normal or anomalous and uncertain (i.e., stability
score is near 0.5) when the example is equidistant from the normal and anomalous
examples.

6.4 Conclusion

We investigated how simulating to draw different training sets (i.e., perturbing the
data) affects the model’s prediction for a fixed test example. We called our uncertainty
measure stability and provided a formal definition, i.e. how likely a model’s prediction
would flip when subject to perturbations in the training set. Moreover, we introduced
ExCeeD, a two-step method to estimate such a stability metric. In the first step, we
employed a Bayesian approach to get smooth outlier probabilities. In the second
step, these estimated outlier probabilities were utilized to compute a stability score for
each example. Through an extensive experimental comparison, ExCeeD showed to
recover stability scores that align closer with empirical frequencies than most adapted
baselines.
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While measuring the model’s uncertainty is a hard and important task, exploiting
such uncertainty to improve decision-making is even more crucial. That is, how can
we leverage the stability metric to enhance an unsupervised anomaly detector? We
investigate this question in the following Chapter.



Chapter 7

Unsupervised anomaly
detection with rejection

When using an anomaly detector for decision-making, the user must trust the system.
However, unsupervised anomaly detectors tend to have high uncertainty, especially
close to the decision boundary, because they cannot leverage the labeled examples to
distinguish between the two classes. As a result, the detector’s predictions should be
treated with some circumspection.

One way to increase user trust in the anomaly detection system is to consider Learning
to Reject [49]. In this setting, the model does not always make a prediction. Instead,
it can abstain when it is at a heightened risk of making a mistake thereby improving
its performance when it does offer a prediction. Abstention has the drawback that no
prediction is made, which means that a person must intervene to make a decision.

Current approaches for ambiguity rejection threshold what constitutes being too close
to the decision boundary by evaluating the model’s predictive performance on the
examples for which it makes a prediction (i.e., accepted), and those where it abstains
from making a prediction (i.e., rejected) [40, 156, 249]. Intuitively, the idea is to find
a threshold where the model’s predictive performance is (1) significantly lower on
rejected examples than on accepted examples and (2) higher on accepted examples
than on all examples (i.e., if it always makes a prediction). Unfortunately, existing
learning to reject approaches that set a threshold in this manner require labeled data,
which is not available in anomaly detection. In this Chapter, we fill in this gap.
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Problem Statement

The problem that this chapter addresses is the following:

Given: An unlabeled dataset D with contamination γ, an unsupervised detector f , a
cost function c : {0, 1} × {0, 1,®} → R;

Do: Introduce a reject option to f , i.e. find a pair (confidence, threshold) that minimizes
the cost.

Contributions of this Chapter

This Chapter proposes an approach to perform ambiguity rejection for anomaly
detection in a completely unsupervised manner. Specifically, we make three major
contributions. First, we conduct a thorough novel theoretical analysis of a stability
metric for anomaly detection [187] and show that it has several previously unknown
properties that are of great importance in the context of learning to reject. Namely, it
captures the uncertainty close to the detector’s decision boundary, and only a limited
number of examples get a stability value strictly lower than 1. Second, this enables
us to design an ambiguity rejection mechanism without any labeled data that offers
strong guarantees which are often sought in Learning to Reject [49, 213, 37]. We can
derive an accurate estimate of the rejected examples proportion, as well as a theoretical
upper bound that is satisfied with high probability. Moreover, given a cost function
for different types of errors, we provide an estimated upper bound on the expected
cost at the prediction time. Third, we evaluate our approach on an extensive set of
unsupervised detectors and benchmark datasets and conclude that (1) it performs
better than several adapted baselines based on other unsupervised metrics, and (2) our
theoretical results hold in practice.

The content of this chapter is based on the following publication [182]:1

Perini, L., and Davis, J. Unsupervised Anomaly Detection with Rejection. In
Proceedings of the Thirty-Seven Conference on Neural Information Processing
Systems (NeurIPS 2023).

1LP provided the main body of the work (code, theory, text), JD guided formalizing and structuring the
text.
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7.1 Methodology

We propose an anomaly detector-agnostic approach for performing learning to reject
that requires no labels. Our key contribution is a theoretical analysis of the ExCeeD
stability-based confidence metric that proves that only a limited number of examples
have confidence lower than 1 − ε (Sec. 7.1.1). Intuitively, the detector’s predictions
for most examples would not be affected by slight perturbations of the training set:
it is easy to identify the majority of normal examples and anomalies because they
will strongly adhere to the data-driven heuristics that unsupervised anomaly detectors
use. For example, using the data density as a measure of anomalousness [29] tends
to identify all densely clustered normals and isolated anomalies, which constitute the
majority of all examples. In contrast, only relatively few cases would be ambiguous
and hence receive low confidence (e.g., small clusters of anomalies and normals at the
edges of dense clusters).

Our approach is called RejEx (Rejecting via ExCeeD) and works in two steps. First,
it computes the stability-based confidence metric Ms as the margin between the two
classes’ stabilities:

Ms = |P(Ŷ∗ = 1|s) − P(Ŷ∗ = 0|s)| = |2P(Ŷ∗ = 1|s) − 1|.

Second, it simply rejects any example with confidence Ms that falls below threshold
τ = 1 − ε. Theoretically, this constant reject threshold provides several relevant
guarantees. First, one often needs to control the proportion of rejections (namely, the
rejection rate) to estimate the number of decisions left to the user. Thus, we propose
an estimator that only uses training instances to estimate the rejection rate at test time.
Second, because in some applications avoiding the risk of rejecting all the examples
is a strict constraint, we provided an upper bound for the rejection rate (Sec. 7.1.2).
Finally, we compute a theoretical upper bound for a given cost function that guarantees
that using RejEx keeps the expected cost per example at test time low (Sec. 7.1.3).

7.1.1 Setting the Rejection Threshold through a Novel
Theoretical Analysis of ExCeeD

Our novel theoretical analysis proves (1) that the stability metric by ExCeeD is lower
than 1 − ε for a limited number of examples (Theorem 8), and (2) that such examples
with low confidence are the ones close to the decision boundary (Corollary 9). Thus,
we propose to reject all these uncertain examples by setting a rejection threshold

τ = 1 − ε = 1 − 2e−T for T ≥ 4,

where 2e−T is the tolerance that excludes unlikely scenarios, and T ≥ 4 is required for
Theorem 8.
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We motivate our approach as follows. Given an example x with score s, let ψN =
|{i≤N : si≤s}|

N ∈ [0, 1] be the training frequency, i.e. the proportion of training scores
lower than s. Then, Theorem 8 shows that the confidence Ms is lower than 1 − 2e−T

(for T ≥ 4) if ψn belongs to an interval [t1, t2] obtained as a function of N, γ, T . By
analyzing [t1, t2], Corollary 9 proves that the closer an example is to the decision
boundary, the lower the confidence Ms, and that a score s = λ (decision threshold) has
confidence Ms = 0.

Remark. Chapter 6 performed an asymptotic analysis of ExCeeD that investigates the
metric’s behavior when the training set’s size N → +∞. In contrast, this novel analysis
is finite-sample and hence provides more practical insights, as real-world scenarios
involve having a finite dataset with size N ∈ N.

Theorem 8 (Analysis of ExCeeD). Let s be an anomaly score, and ψN ∈ [0, 1] its
training frequency. For T ≥ 4, there exist t1 = t1(N, γ,T ) ∈ [0, 1], t2 = t2(N, γ,T ) ∈
[0, 1] such that

ψN ∈ [t1, t2] =⇒ Ms ≤ 1 − 2e−T .

Proof. See Appendix C for the formal proof. □

The interval [t1, t2] has two relevant groups of properties. First, it becomes narrower
when increasing N (P1) and larger when increasing T (P2). This means that collecting
more training data results in smaller rejection regions while decreasing the tolerance
ε = 2e−T has the opposite effect. Second, it is centered (not symmetrically) on 1−γ (P3-
P4), which means that examples with anomaly scores close to the decision threshold
λ are the ones with a low confidence score (P5). The next Corollary lists these 5
properties.

Corollary 9. Given t1, t2 as in Theorem 8, the following properties hold for any s,
n = N, γ, T ≥ 4:

P1. limN→+∞ t1 = limN→+∞ t2 = 1 − γ;

P2. t1 and t2 are, respectively, monotonic decreasing and increasing as functions of
T;

P3. the interval always contains 1 − γ, i.e. t1 ≤ 1 − γ ≤ t2;

P4. for N → ∞, there exists s∗ with ψN = t∗ ∈ [t1, t2] such that t∗ → 1 − γ and
Ms → 0.

P5. ψN ∈ [t1, t2] iff s ∈ [λ − u1, λ + u2], where u1(N, γ,T ), u2(N, γ,T ) are positive
functions.
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Proof sketch. For P1, it is enough to observe that t1, t2 → 1 − γ for N → +∞. For P2
and P3, the result comes from simple algebraic steps. P4 follows from the surjectivity
of Ms when N → +∞, the monotonicity of P(Ŷ∗ = 1|s), from P1 with the squeeze
theorem. Finally, P5 follows from ψN ∈ [t1, t2] =⇒ s ∈

[
ψ−1

N (t1), ψ−1
N (t2)

]
, as

ψN is monotonic increasing, where ψ−1
N is the inverse-image of ψN . Because for P3

1 − γ ∈ [t1, t2], it holds that ψ−1
N (t1) ≤ ψ−1

N (1 − γ) = λ ≤ ψ−1
N (t2). This implies that

s ∈ [λ − u1, λ + u2], where u1 = λ − ψ
−1
N (t1), u2 = λ − ψ

−1
N (t2). □

7.1.2 Estimating and Bounding the Rejection Rate

It is important to have an estimate of the rejection rate, which is the proportion of
examples for which the model will abstain from making a prediction. This is an
important performance characteristic for differentiating among candidate models.
Moreover, it is important that not all examples are rejected because such a model
is useless in practice. We propose a way to estimate the rejection rate and Theorem 10
shows that our estimate approaches the true rate for large training sets. We strengthen
our analysis and introduce an upper bound for the rejection rate, which guarantees
that, with arbitrarily high probability, the rejection rate is kept lower than a constant
(Theorem 11).

Definition 7 (Rejection rate). Given the confidence metric Ms and the rejection
threshold τ, the rejection rate R = P(Ms ≤ τ) is the probability that a test example
with score s gets rejected.

We propose the following estimator for the reject rate:

Definition 8 (Rejection rate estimator). Given anomaly scores s with training
frequencies ψN , let ϕ : [0, 1] → [0, 1] be the function such that P(Ŷ∗ = 1|s) = ϕ(ψN).
We define the rejection rate estimator R̂ as

R̂ = F̂ψN

(
ϕ−1

(
1 − e−T

))
− F̂ψN

(
ϕ−1

(
e−T

))
(7.1)

where ϕ−1 is the inverse-image through ϕ, and, for u ∈ [0, 1], F̂ψN (u) = |i≤N : ψN (si)≤u|
N is

the empirical cumulative distribution of ψN .

Note that R̂ can be computed in practice, as the ψN has a distribution that is arbitrarily
close to uniform, as stated by Theorem 19 and 20 in the Appendix C.

Theorem 10 (Rejection rate estimate). Let ϕ be as in Definition 8. Then, for high
values of N, R̂ ≈ R.
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Proof. From the definition of rejection rate 7, it follows

R = P
(
Ms ≤ 1 − 2e−T

)
= P

(
P(Ŷ∗ = 1|s)∈

[
e−T , 1−e−T

])
= P

(
ϕ(ψN)∈

[
e−T , 1−e−T

])
= P

(
ψN ∈

[
ϕ−1

(
e−T

)
, ϕ−1

(
1−e−T

)])
= FψN

(
ϕ−1

(
1 − e−T

))
− FψN

(
ϕ−1

(
e−T

))
.

where FψN (·) = P(ψN ≤ ·) is the theoretical cumulative distribution of ψN . Because the
true distribution of ψN for test examples is unknown, the estimator approximates FψN

using the training scores si and computes the empirical F̂ψN . As a result,

R ≈ F̂ψn

(
g−1

(
1 − e−T

))
− F̂ψn

(
g−1

(
e−T

))
= R̂.

□

Theorem 11 (Rejection rate upper bound). Let s be an anomaly score, Ms be its
confidence value, and τ = 1 − 2e−T be the rejection threshold. For N ∈ N, γ ∈
[0, 0.5), and small δ > 0, there exists a positive real function η(N, γ,T, δ) such that
R ≤ η(N, γ,T, δ) with probability at least 1 − δ, i.e. the rejection rate is bounded.

Proof. Theorem 8 states that there exists two functions t1 = t1(N, γ,T ), t2 =
t2(N, γ,T ) ∈ [0, 1] such that the confidence is lower than τ if ψN ∈ [t1, t2]. Moreover,
Theorems 19 and 20 claim that ψN has a distribution that is close to uniform with
high probability (see the theorems and proofs in the Appendix C). As a result, with
probability at least 1 − δ, we find η(N, γ,T, δ) as follows:

R = P(Ms ≤ 1 − 2e−T )
T8︷︸︸︷
≤ P (ψN ∈ [t1, t2]) = FψN (t2) − FψN (t1)

T20︷︸︸︷
≤ Fψ(t2)−Fψ(t1)+2

√
ln 2

δ

2N

T19︷︸︸︷
= t2(N, γ,T )−t1(N, γ,T )+2

√
ln 2

δ

2N
=η(N, γ,T, δ).

□

7.1.3 Upper Bounding the Expected Test Time Cost

In a learning with reject scenario, there are costs associated with three outcomes:
false positives (c f p > 0), false negatives (c f n > 0), and rejection (cr) because
abstaining typically involves having a person intervene. Estimating an expected per
example prediction cost at test time can help with model selection and give a sense of
performance. Theorem 12 provides an upper bound on the expected per example cost
when (1) using our estimated rejection rate (Theorem 10), and (2) setting the decision
threshold λ as in Sec. 2.
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Definition 9 (Cost function). Let Y be the true label random variable. Given the costs
c f p, c f n > 0, and cr , the cost function is a function c : {0, 1} × {0, 1,®} → R such that

c(Y, Ŷ) = crP(Ŷ = ®) + c f pP(Ŷ = 1|Y = 0) + c f nP(Ŷ = 0|Y = 1)

Note that defining a specific cost function requires domain knowledge. Following the
learning to reject literature, we set an additive cost function. Moreover, the rejection
cost needs to satisfy the inequality cr ≤ min{(1−γ)c f p, γc f n}. This avoids the possibility
of predicting always anomaly for an expected cost of (1− γ)c f p, or always normal with
an expected cost of γc f n [184].

Theorem 12. Let c be a cost function as defined in Definition 9, and ϕ be as in
Definition 8. Given a (test) example x with score s, the expected example-wise cost is
bounded by

Ex[c] ≤ min{γ, A}c f n + (1 − B)c f p + (B − A)cr, (7.2)

where A = F̂ψN (ϕ−1
(
e−T

)
), B = F̂ψN (ϕ−1

(
1 − e−T

)
) are as in Theorem 10.

Proof. We indicate the true label random variable as Y , and the non-rejected false
positives and false negatives as, respectively,

FP = P
(
Ŷ = 1|Y = 0,Ms > 1 − 2e−T

)
FN = P

(
Ŷ = 0|Y = 1,Ms > 1 − 2e−T

)
Using Theorem 10 results in

Ex[c] = Ex[c f nFN + c f pFP + crR] = Ex[c f nFN] + Ex[c f pFP] + cr(B − A)

where A = F̂ψN (ϕ−1
(
e−T

)
), B = F̂ψN (ϕ−1

(
1 − e−T

)
) come from Theorem 10. Now we

observe that setting a decision threshold λ such that N×γ scores are higher implies that,
on expectation, the detector predicts a proportion of positives equal to γ = P(Y = 1).
Moreover, for ε = 2e−T ,

• FP ≤ P
(
Ŷ = 1|Ms > 1 − ε

)
= 1 − B as false positives must be less than total

accepted positive predictions;

• FN ≤ γ and FN ≤ P
(
Ŷ = 0|Ms > 1 − ε

)
= A, as you cannot have more false

negatives than positives (γ), nor than accepted negative predictions (A).

From these observations, we conclude Ex[c] ≤ min{γ, A}c f n + (1−B)c f p + (B−A)cr. □
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7.2 Related work

There is no research on learning to reject in unsupervised anomaly detection. However,
three main research lines are connected to this work.

1) Supervised methods. If some labels are available, one can use traditional
supervised approaches to add the reject option into the detector [44, 142]. Commonly,
labels can be used to find the optimal rejection threshold in two ways: 1) by trading
off the model performance (e.g., AUROC) on the accepted examples with its rejection
rate [93, 1], or 2) by minimizing a cost function [169, 37], a risk function [76, 110],
or an error function [139, 126]. Alternatively, one can include the reject option in the
model and directly optimize it during the learning phase [213, 49, 124].

2) Self-Supervised methods. If labels are not available, one can leverage self-
supervised approaches to generate pseudo-labels in order to apply traditional supervised
learning to reject methods [107, 210, 77, 141]. For example, one can employ any
unsupervised anomaly detector to assign training labels, fit a (semi-)supervised detector
(such as DeepSAD [206] or Repen [177]) on the pseudo labels, compute a confidence
metric [53], and find the optimal rejection threshold by minimizing the cost function
treating the pseudo-labels as the ground truth.

3) Optimizing unsupervised metrics. There exist several unsupervised metrics
(i.e., they can be computed without labels) for quantifying detector quality [153], which
we described in Section 2. Because they do not need labels, one can find the rejection
threshold by maximizing the margin between the detector’s quality (computed using
such metric) on the accepted and on the rejected examples [192]. This allows us to
obtain a model that performs well on the accepted examples and poorly on the rejected
ones, which is exactly the same intuition that underlies the supervised approaches.

7.3 Experiments

We experimentally address the following research questions:

Q1. How does RejEx’s cost compare to the baselines?

Q2. How does varying the cost function affect the results?

Q3. How does RejEx’s CPU time compare to the baselines?
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Q4. Do the theoretical results hold in practice?

Q5. Would RejEx’s performance significantly improve if it had access to training
labels?

7.3.1 Experimental Setup

Methods. We compare RejEx2 against 7 baselines for setting the rejection threshold.
These can be divided into three categories: no rejection, self-supervised, and
unsupervised metric-based.

We use one method NoRej that always makes predictions and never rejects.

We consider one self-supervised approach SS-Repen [177]. This uses (any)
unsupervised detector to obtain pseudo labels for the training set. It then sets the
rejection threshold as follows: 1) it creates a held-out validation set (20%), 2) it fits
Repen, a state-of-the-art (semi-)supervised anomaly detector on the training set with
the pseudo labels, 3) it computes on the validation set the confidence values as the
margin between Repen’s predicted class probabilities |P(Y = 1|s) − P(Y = 0|s)|, 4) it
finds the optimal threshold τ by minimizing the total cost on the validation set.

We consider 5 approaches that employ an existing unsupervised metric to set
the rejection threshold and hence do not require labels. Mv [81], Em [81], and
Stability [183] are unsupervised metric-based methods based on stand-alone internal
evaluations that use a single anomaly detector to measure its quality, Udr [57] and
Ens [199] are unsupervised consensus-based metrics that an ensemble of detectors
(all 12 considered in our experiments) to measure a detector’s quality.3 We apply
each of these 5 baselines as follows. 1) We apply the unsupervised detector to assign
an anomaly score to each train set example. 2) We convert these scores into class
probabilities using [129]. 3) We compute the confidence scores on the training set
as difference between these probabilities: |P(Y = 1|s) − P(Y = 0|s)|. 4) We evaluate
possible thresholds on this confidence by computing the unsupervised metric on the
accepted and on the rejected examples and select the threshold that maximizes the
difference in the metric’s value on these two sets of examples. This aligns with the
common learning to reject criteria for picking a threshold [40, 192] such that the model
performs well on the accepted examples and poorly on the rejected ones.

Data. We carry out our study on 34 publicly available benchmark datasets, widely
used in the literature [91]. These datasets cover many application domains, including
healthcare (e.g., disease diagnosis), audio and language processing (e.g., speech

2Code available at: https://github.com/Lorenzo-Perini/RejEx.
3Section 2 describes these approaches.

https://github.com/Lorenzo-Perini/RejEx
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recognition), image processing (e.g., object identification), and finance (e.g., fraud
detection). To limit the computational time, we randomly sub-sample 20, 000 examples
from all large datasets. Table C.1 in the Appendix C provides further details.

Anomaly Detectors and Hyperparameters. We set our tolerance ε = 2e−T

with T = 32. Note that the exponential smooths out the effect of T ≥ 4, which
makes setting a different T have little impact. We use a set of 12 unsupervised
anomaly detectors implemented in PyOD [258] with default hyperparameters [220]
because the unsupervised setting does not allow us to tune them: kNNO [10], IF [151],
LOF [29], OCSVM [207], Ae [39], HBOS [82], LODA [189], COPOD [145], GMM [4],
ECOD [146], KDE [140], INNE [13]. We set all the baselines’ rejection threshold via
Bayesian Optimization with 50 calls [71].

Setup. For each [dataset, detector] pair, we proceed as follows: (1) we split the
dataset into training and test sets (80-20) using 5 fold cross-validation; (2) we use the
detector to assign the anomaly scores on the training set; (3) we use either RejEx or
a baseline to set the rejection threshold; (4) we measure the total cost on the test set
using the given cost function. We carry out a total of 34 × 12 × 5 = 2040 experiments.
All experiments were run on an Intel(R) Xeon(R) Silver 4214 CPU with 128GiB of
memory.

7.3.2 Experimental Results
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Figure 7.1: Average cost per example (left) and rank (right) aggregated per detector
(x-axis) over all the datasets. Our method obtains the lowest (best) cost for 9 out of 12
detectors and it always has the lowest (best) ranking position for c f p = c f n = 1, cr = γ.
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Figure 7.2: Average cost per example aggregated by detector over the 34 datasets when
varying the three costs on three representative cases: (left) false positives are penalized
more, (center) false negatives are penalized more, (right) rejection has a lower cost
than FPs and FNs.
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Figure 7.3: Average cost per example (left) and average rejection rate (right) at test
time aggregated by dataset over the 12 detectors. In both plots, the empirical value
(circle) is always lower than the predicted upper bound (continuous black line), which
makes it consistent with the theory. On the right, the expected rejection rates (stars) are
almost identical to the empirical values.
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Q1: RejEx against the baselines. Figure 7.1 shows the comparison between our
method and the baselines, grouped by detector, when setting the costs c f p = c f n = 1 and
cr = γ (see the Appendix C for further details). RejEx achieves the lowest (best) cost
per example for 9 out of 12 detectors (left-hand side) and similar values to SS-Repen
when using LODA, LOF and KDE. Averaging over the detectors, RejEx reduces the
relative cost by more than 5% vs SS-Repen, 11% vs Ens, 13% vs Mv and Udr, 17% vs
Em, 19% vs NoRej. Table C.2 in the Appendix C shows a detailed breakdown.

For each experiment, we rank all the methods from 1 to 8, where position 1 indicates the
lowest (best) cost. The right-hand side of Figure 7.1 shows that RejEx always obtains
the lowest average ranking. We run a statistical analysis separately for each detector:
the Friedman test rejects the null-hypothesis that all methods perform similarly (p-value
< e−16) for all the detectors. The ranking-based post-hoc Bonferroni-Dunn statistical
test [51] with α = 0.05 finds that RejEx is significantly better than the baselines for 6
detectors (INNE, IF, HBOS, kNNO, ECOD, OCSVM).

Q2. Varying the costs c f p, c f n, cr. The three costs c f p, c f n, and cr are usually
set based on domain knowledge: whether to penalize the false positives or the false
negatives more depends on the application domain. Moreover, the rejection cost needs
to satisfy the constraint cr ≤ min{(1 − γ)c f p, γc f n} [184]. Therefore, we study their
impact on three representative cases: (case 1) high false positive cost (c f p = 10,
c f n = 1, cr = min{10(1 − γ), γ), (case 2) high false negative cost (c f p = 1, c f n = 10,
cr = min{(1− γ), 10γ), and (case 3) same cost for both mispredictions but low rejection
cost (c f p = 5, c f n = 5, cr = γ). Note that scaling all the costs has no effect on the
relative comparison between the methods, so the last case is equivalent to c f p = 1,
c f n = 1, and cr = γ/5.

Figure 7.2 shows results for the three scenarios. Compared to the unsupervised metric-
based methods, the left plot shows that our method is clearly the best for high false
positives cost: for 11 out of 12 detectors, RejEx obtains both the lowest (or similar for
GMM) average cost and the lowest average ranking position. This indicates that using
RejEx is suitable when false alarms are expensive. Similarly, the right plot illustrates
that RejEx outperforms all the baselines for all the detectors when the rejection cost is
low (w.r.t. the false positive and false negative costs). Even when the false negative cost
is high (central plot), RejEx obtains the lowest average cost for 11 detectors and has
always the lowest average rank per detector. See the Appendix C (Table C.3 and C.4)
for more details.

Q3. Comparing the CPU time. Table 7.1 reports CPU time in milliseconds per
training example aggregated over the 34 datasets needed for each method to set the
rejection threshold on three unsupervised anomaly detectors (IF, HBOS, COPOD).
NoRej has CPU time equal to 0 because it does not use any reject option. RejEx takes
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CPU time in ms (mean ± std.)
Det. NoRej RejEx SS-Rep Mv Em Udr Ens Stab.

IF 0.0±0.0 0.06±0.22 90±68 89±99 155±161 120±132 122±135 916±900
HBOS 0.0±0.0 0.13±0.93 89±53 39±81 80±129 200±338 210±358 142±242
COPOD 0.0±0.0 0.04±0.04 84±53 21±28 81±60 119±131 123±138 140±248

Table 7.1: Average CPU time (in ms) per training example (± std) to set the rejection
threshold aggregated over all the datasets when using IF, HBOS, and COPOD as
unsupervised anomaly detector. RejEx has a lower time than all the methods but NoRej,
which uses no reject option.

just a little more time than NoRej because computing ExCeeD has linear time while
setting a constant threshold has constant time. In contrast, all other methods take 1000×
longer because they evaluate multiple thresholds. For some of these (e.g., Stability),
this involves an expensive internal procedure.

Q4. Checking on the theoretical results. Section 5.1 introduces three theoretical
results: the rejection rate estimate (Theorem 10), and the upper bound for the rejection
rate (Theorem 11) and for the cost (Theorem 12). We run experiments to verify whether
they hold in practice. Figure 7.3 shows the results aggregated over the detectors. The
left-hand side confirms that the prediction cost per example (blue circle) is always
≤ than the upper bound (black line). Note that the upper bound is sufficiently strict,
as in some cases it equals the empirical cost (e.g., Census, Wilt, Optdigits). The
right-hand side shows that our rejection rate estimate (orange star) is almost identical
to the empirical rejection rate (orange circle) for most of the datasets, especially the
large ones. On the other hand, small datasets have the largest gap, e.g., Wine (n = 129),
Lymphography (n = 148), WPBC (n = 198), Vertebral (n = 240). Finally, the empirical
rejection rate is always lower than the theoretical upper bound (black line), which we
compute by using the empirical frequencies ψn.

Q5. Impact of training labels on RejEx. We simulate having access to the
training labels and include an extra baseline: Oracle uses ExCeeD as a confidence
metric and sets the (optimal) rejection threshold by minimizing the cost function using
the training labels. Table 7.2 shows the average cost and rejection rates at test time
obtained by the two methods. Overall, RejEx obtains an average cost that is only
0.6% higher than Oracle’s cost. On a per-detector basis, RejEx obtains a 2.5% higher
cost in the worst case (with LODA), while getting only a 0.08% increase in the best
case (with KDE). Comparing the rejection rates, RejEx rejects on average only ≈ 1.5
percentage points more examples than Oracle (12.9% vs 11.4%). The Appendix C
provides further details.
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Table 7.2: Mean ± std. for the cost per example (on the left) and the rejection rate
(on the right) at test time on a per detector basis and aggregated over the datasets.

Cost per example (Mean±Std.) Rejection Rate (Mean±Std.)
Detector RejEx Oracle RejEx Oracle

Ae 0.126 ± 0.139 0.126 ± 0.139 0.131 ± 0.132 0.118 ± 0.125
COPOD 0.123 ± 0.140 0.121 ± 0.140 0.123 ± 0.131 0.101 ± 0.114
ECOD 0.119 ± 0.138 0.118 ± 0.138 0.125 ± 0.130 0.107 ± 0.114
GMM 0.123 ± 0.135 0.122 ± 0.134 0.139 ± 0.143 0.132 ± 0.136
HBOS 0.118 ± 0.129 0.118 ± 0.129 0.139 ± 0.148 0.114 ± 0.128
IF 0.118 ± 0.129 0.118 ± 0.128 0.127 ± 0.131 0.118 ± 0.130
INNE 0.115 ± 0.129 0.115 ± 0.128 0.132 ± 0.132 0.122 ± 0.125
KDE 0.129 ± 0.140 0.129 ± 0.139 0.121 ± 0.129 0.105 ± 0.120
kNNO 0.119 ± 0.123 0.118 ± 0.123 0.127 ± 0.129 0.112 ± 0.117
LODA 0.125 ± 0.133 0.122 ± 0.130 0.126 ± 0.124 0.110 ± 0.114
LOF 0.126 ± 0.131 0.125 ± 0.131 0.129 ± 0.126 0.118 ± 0.115
OCSVM 0.120 ± 0.131 0.120 ± 0.131 0.126 ± 0.128 0.107 ± 0.115

Avg. 0.122 ± 0.133 0.121 ± 0.133 0.129 ± 0.132 0.114 ± 0.121

Limitations. Because RejEx does not rely on labels, it can only give a coarse-grained
view of performance. For example, in many applications anomalies will have varying
costs (i.e., there are instance-specific costs) which we cannot account for. Moreover,
RejEx has a strictly positive rejection rate, which may increase the cost of a highly
accurate detector. However, this happens only in ≈ 5% of our experiments.

7.4 Conclusion

In this Chapter, we focused on unsupervised learning to reject for anomaly detection.
The key issue is how to determine the rejection threshold without having access to
labels, which all existing methods leverage. To overcome this, we introduced RejEx,
which exploits our theoretical analysis of the stability-based confidence metric from
ExCeeD to set a constant threshold. Moreover, we proved that a constant rejection
threshold comes with strong theoretical guarantees. First, we can estimate the value
and an upper bound for the proportion of rejected test examples. Second, we can design
a theoretical upper bound on the expected test-time prediction cost per example. In
our experimental evaluation, we compared RejEx with several unsupervised metric-
based methods and showed that it achieves better costs for the majority of detectors.
Additionally, we empirically verified that our theoretical findings hold, and that our
estimate of the rejection rate accurately recovers the true value in most cases.



Chapter 8

Conclusions and Future Work

This chapter summarizes the key contributions and provides possible directions for
future work.

8.1 Summary

The objective of this dissertation was to push the boundaries of traditional anomaly
detection in three unexplored directions.

First, we studied how to transform the anomaly scores into class predictions by setting
a decision threshold based on the contamination factor. Because the contamination
factor is usually unknown, we propose to estimate it by: (a) acquiring some normal
labels, (b) leveraging a related domain with the given contamination, and (c) assuming
a Bayesian perspective.

Second, we investigated how to quantify the uncertainty in predictions for unsupervised
anomaly detections. That is, we proposed a Bayesian approach to measure a detector’s
stability when subject to slight modifications of the training set. This new metric does
not require any training label, as it targets the detector’s consistency of making the
same prediction rather than its accuracy.

Third, we explored the practical scenario where unsupervised anomaly detectors need
to be deployed and, thus, trusted by practitioners. Because they tend to have high
uncertainty in predictions due to the lack of training labels, we proposed to allow the
detector to abstain when its prediction has high uncertainty. This has the clear effect of
increasing the user trust whenever the detector makes a prediction.

117



118 CONCLUSIONS AND FUTURE WORK

Next, we briefly summarize the main five contributions that enable performing
operational, uncertainty-aware and reliable anomaly detection.

8.1.1 Contribution 1: Class prior estimation in active positive
and unlabeled learning

We proposed CAPe, a method that estimates the class prior (i.e., one minus the
contamination factor) in a PU setting where the positive labels (i.e., normals) were
acquired through active learning. CAPe derives the class prior by first estimating each
unlabeled example’s propensity score, which is the probability that the active learning
approach will query the example’s label. Theoretically, we proved that our estimate of
the class prior will converge to its true value if we obtain accurate propensity scores.
Practically, we showed how to estimate the propensity scores in two settings. In the
first, the user never makes mistakes and only labels positive examples whereas the
second considers modeling the user’s uncertainty. Empirically, we demonstrated that
CAPe recovers the class prior more accurately than existing approaches.

8.1.2 Contribution 2: Transferring the contamination factor
between anomaly detection domains by shape similarity

We proposed a novel method TrADe for estimating the target domain contamination
factor given a source dataset with a known contamination factor. The key insight
enabling our approach is that the distribution of the normal examples’ anomaly scores
in both domains will be similar if they are derived using the same anomaly detection
algorithm. Theoretically, we proved that TrADe’s estimate of the contamination factor
converges to its actual value when the size of the target dataset increases. Empirically,
we demonstrated that TrADe can more accurately estimate the contamination factor
than several baselines. More importantly, more accurate estimates lead to improved
anomaly detection performance as shown by higher F1 scores.

8.1.3 Contribution 3: Estimating the contamination factor’s
distribution in unsupervised anomaly detection

We presented γGMM, the first practical method for estimating the posterior distribution
of the contamination factor γ in a completely unsupervised manner. We empirically
demonstrated on 22 datasets that our mean estimates effectively solve the question of
where to threshold the predictions. We outperform all 21 comparison methods and
show that the gap in detection accuracy between our estimate and the ground truth
(available for these benchmark datasets) is small.
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On first impression, the success of our method in solving this challenging and seemingly
ill-posed problem may seem surprising. However, it can be attributed to a careful choice
of strong inductive biases built into the underlying probabilistic model. We argue that
all of the following elements are necessary, each substantially contributing to the overall
success: (i) representing the data in the space of anomaly detector scores defines a
meaning for the dimensions and allows borrowing inductive biases of arbitrary detector
algorithms, (ii) the mixture model encodes a natural clustering assumption for both
the normal samples and the anomalies, (iii) the ordering used for determining the final
distribution incorporates both the location and shape of the mixture components in a
carefully balanced manner and (iv) the transformation from the ordering to probabilities
is robustly parameterized via just two intuitive hyperparameters, enabling the use of
the same defaults for all cases.

8.1.4 Contribution 4: A theoretical framework for assessing
an anomaly detector’s example-wise stability

We proposed a method to estimate the stability of anomaly detectors in their example-
wise class predictions. We first formally defined stability as the probability that
example-wise predictions change due to perturbations in the training set. Then, we
introduced ExCeeD, a method that estimates the stability using a two-step approach.
First, we estimate smooth outlier probabilities using a Bayesian approach. Second,
we use the estimated outlier probabilities to derive a stability score on an example-by-
example basis. A large experimental comparison shows that our approach can recover
stability scores matching empirical frequencies.

8.1.5 Contribution 5: Unsupervised Anomaly Detection with
Rejection

We addressed learning to reject in the context of unsupervised anomaly detection. The
key challenge was how to set the rejection threshold without access to labels which are
required by all existing approaches We proposed an approach RejEx that exploits our
theoretical analysis of the ExCeeD stability metric. Our new analysis shows that it is
possible to set a constant rejection threshold and that doing so offers strong theoretical
guarantees. First, we can estimate the proportion of rejected test examples and provide
an upper bound for our estimate. Second, we can provide a theoretical upper bound
on the expected test-time prediction cost per example. Experimentally, we compared
RejEx against several (unsupervised) metric-based methods and showed that, for the
majority of anomaly detectors, it obtained lower (better) cost. Moreover, we proved
that our theoretical results hold in practice and that our rejection rate estimate is almost
identical to the true value in the majority of cases.
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8.2 Future Research Directions

Improving the example-wise stability metric. Chapter 6 introduced a stability
metric that quantifies the anomaly detector’s consistency in making the same
prediction, given a value for the contamination factor. However, this metric can
be substantially improved in two complementary directions. First, deterministic
estimates of the contamination factor may yield sub-optimal stability values.
Thus, a question is: how can we design a stability metric that uses a (posterior)
distribution of contamination factor values? Second, one usually tests a model
on batches of data (i.e., the test set has more than one sample). Can we design a
batch-wise stability metric that leverages the properties of a batch of examples?

Active learning strategy for models with rejection. In anomaly detection, a current
trend involves weakly-supervised approaches using active learning to gather
a few targeted labels. However, there is a challenge in developing an active
learning strategy for a model with rejection. The reject option is designed to
reject ambiguous examples near the decision boundary, while active learning
refines the decision boundary by selecting examples close by. This creates a
potential issue where typical active learning strategies may gather sub-optimal
labels by querying areas the model would reject during testing. The central
question is: How do we design an optimal active learning strategy for a model
with rejection?

Calibration with flexible supervision. Transforming scores into calibrated prob-
abilities requires ground truth labels because it needs to link the estimated
probabilities to the true class frequencies. Although the current literature only
explores fully supervised settings, weakly supervised methods may benefit from
having calibrated probabilities. In scenarios like anomaly detection, where
collecting labels is challenging, adapting calibration techniques to leverage
limited labeled examples and a majority of unlabeled examples can potentially
increase the accuracy and reliability of the model. The central question is: Can
we develop algorithms to calibrate the detector’s scores using both labeled and
unlabeled examples?

Evaluation metric for decision threshold. Evaluating the quality of a decision
threshold is a challenging task. In this dissertation, we proposed to evaluate the
quality of the decision threshold by computing the F1 score, a suitable metric
for anomaly detection. However, because the F1 score targets the quality of the
positive class predictions, it might lead to a biased evaluation of the decision
threshold. For instance, a detector that flips the anomaly score ranking would
have an F1 score equal to 0 when using the true contamination factor, and an F1
score equal to 2γ

1+γ > 0 when always predicting anomaly class. This raises the
question: Can we design a proper evaluation metric to assess the quality of a
chosen decision threshold?
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Anomaly augmentation for tabular data using foundation models. Most anomaly
detection setting includes a tiny proportion of anomalies because anomalous
examples are often hard to collect. However, it has been shown that
supervised/semi-supervised detectors obtain higher performance when trained
on a large set of anomalies. Recently, foundation models have become important
and accurate in generating realistic fake examples, particularly for image data.
This opens up a new question: How can we leverage foundation models to
generate realistic anomalies to learn an anomaly detector on a broader set of
anomalies?

Data quality metric for fake anomalies. Assuming that a generator for anomalies
exists, it is quite likely that not all of the generated examples are useful for
training an anomaly detection model. For instance, some fake anomalies may be
unrealistic, i.e. they can never occur in the real setting, and including them in
the training set may deteriorate the detector’s performance. Even worse, some
fake anomalies may be indistinguishable from normal patterns, i.e. they overlap
with normals, and learning a detector from mislabeled examples could further
deteriorate its performance. Thus, the central question is: How do we design a
data quality metric for fake anomalous examples, where high-value fakes would
be included in the training set?





Appendix A

Transferring the
contamination factor between
anomaly detection domains
by shape similarity

This Appendix refers to Chapter 4 and contains the full proofs for our theoretical results
and additional details about our experiments:

• First, we provide the proofs for the two propositions listed in the methodology
section (Sec. 4.1).

• Second, we give the proof of our Theorem 5 presented in the theoretical analysis
section. To do so, we provide a number of sub-theorems that are needed to prove
the main result.

• Finally, we further supply additional details about our experiments and results.

A.1 Proofs of methodology section propositions

Proof of Proposition 3. By definition, uλ is a probability density function if two
properties hold:
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1. Non-Negativity. Since u(x) is always non-negative, it follows that uλ(x) ≥ 0 for
any x ∈ [0, 1];

2. Integral equal to 1. Integrating on the support,∫ 1

0
uλ(x) dx =

∫ 1

0

λv(λx)∫ λ

0 v(x′) dx′
dx =

∫ λ

0

�λv(z)

�λ
∫ λ

0 v(x′) dx′
dz = 1,

because the same integral is on both sides of the ratio. □

Proof of Proposition 4. By hypothesis, γT
m = P

(
Tm ≥ λ

T
m

)
= P

(
YT

m = 1
)
. Then,

E
[
γ̂T

m

]
= E

[∑m
i=1 1{ f (x)≥λT

m}
(xi)

m

]
=

m∑
i=1

E
[
1{ f (x)≥λT

m}
(xi)

]
m

=

m∑
i=1

P
({

f (xi) ≥ λT
m

})
m

=

m∑
i=1

P
(
Tm ≥ λ

T
m

)
m

=

m∑
i=1

γT
m

m
= γT

m,

where the equality E[1{ f (x)≥λT
m}

(x)] = P({ f (x) ≥ λT
m}) holds by the definition of indicator

function.

A.2 Theoretical Convergence Analysis

Our main theoretical result can be summarized as follows. For m→ +∞,

• Our estimate of the target threshold λT
m converges to the real target value λT

(Theorem 5 first part);

• Our estimate of the target contamination factor γ̂T
m converges on average to the

real target value γT (Theorem 5 second part).

Because the contamination factor is derived from the predictive threshold, we first
focus on proving that the target predictive threshold of Tm converges to the actual value
of the ground-truth T . Essentially, the equalities in Eq. 4.4 hold if the limit symbol is
allowed to pass out through the functions. We motivate the four steps of Eq. 4.4 by
answering the four following questions:

Q1. Does the set of values minimizing KL(S λS
|| T λ) contains only the real source

threshold λT ?
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Q2. Given that tm → t uniformly, does it hold for any λcut distribution, i.e. tλm → tλ

for any λ ∈ [δ, 1]?

Q3. Does the KL divergence KL(S λS
|| T λ

m) converge to the KL divergence
KL(S λS

||T λ)?

Q4. Are the function arg min and the limit interchangeable?

Finally, we move to the contamination factor by answering to:

Q5. Does the target contamination factor’s estimate γ̂T
m converge to the true target

contamination factor γT ?

Q1. Uniqueness of the Limit

Given that the optimization problem in Eq. 4.1 may return a set of solutions, we first
investigate the uniqueness of the theoretical target threshold λT , which is obtained as a
solution of the optimization problem with the real T instead of Tm. For this task, we
take advantage of the following theorem stating that if two λcut distributions are equal
almost surely, then the two thresholds must be equal.

Theorem 13. Let T be a real continuous random variable with probability density
function t : [0, 1]→ (0,+∞). Let’s assume that there exists λ1, λ2 ∈ [δ, 1], for any fixed
δ > 0, such that the equality

tλ1 (x) = tλ2 (x)

holds for almost every x ∈ [0, 1], where tλ1 and tλ2 are, respectively, the λ1 and λ2 cut
distributions of t. Then,

λ1 = λ2.

Proof. Since λ1, λ2 ∈ [δ, 1], there exists a value a ∈ [max{δ − 1,−λ1,−λ2}, 1 − δ] such
that λ1 = λ2 + a. Then, for almost every x ∈ [0, 1],

tλ1 (x) = t(λ1x) ·
λ1∫ λ1

0 t(x′) dx′
= t((λ2 + a)x) ·

λ2 + a∫ λ2+a
0 t(x′) dx′

and

1 =
tλ1 (x)
tλ2 (x)

=
t((λ2 + a)x)

t(λ2x)
·

(λ2 + a)
∫ λ2

0 t(x′) dx′

λ2
∫ λ2+a

0 t(x′) dx′
=

t((λ2 + a)x)
t(λ2x)

·
1
c
,

where 1
c > 0 refers to the second factor. Hence, we derive that

t((λ2 + a)x) = c · t(λ2x) =⇒ t (bz) = c · t(z),
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where b =
(
1 + a

λ2

)
∈

(
max

{
0, 1 − 1−δ

λ1
, 1 − λ2

λ1

}
, 1 + 1−δ

λ1

)
and z = λ2x ∈ [0, λ2]. By

recurrence, for any n ∈ N,

t(z) = c · t
( z
b

)
= · · · = cn · t

( z
bn

)
.

If a > 0, then it is easy to check that

c =
λ2

λ2 + a
·

∫ λ2+a
0 s(z) dz∫ λ2

0 t(z) dz
< 1.

Then, for n→ +∞

t(z) = cn · t
( z
bn

)
→ 0 for all y ∈ [0, λ2],

which means that t(z) = 0 for all y ∈ [0, λ2] and, consequently, t(x) is constant and
equal to 0 for all x ∈ [0, 1]. This is a contradiction.

On the other hand, if a < 0 then c > 1. However, because t is positive and, especially,
t(0) > 0, we can conclude that

t(z) = cn · t
( z
bn

)
→ +∞ =⇒ t(z) = +∞ ∀ z ∈ [0, λ2],

which is again a contradiction. Thus, a = 0 and λ1 = λ2. □

We exploit this result to show the uniqueness of the limit solution.

Theorem 14 (Uniqueness of the solution). Let S and T be two real continuous random
variables with density, respectively, s, t : [0, 1] → (0,+∞). Let λS , λT ∈ [δ, 1] be two
fixed thresholds, for any δ > 0, such that

KL
(
S λS

∣∣∣∣∣∣∣∣ T λT
)
= 0, (A.1)

where S λS
, T λT

are, respectively, the λS and λT cut distributions. Then,

arg min
λ∈[δ,1]

{
KL

(
S λS

∣∣∣∣∣∣∣∣T λ
)}
= λT .

Proof. By the Gibbs inequality, for any λ ∈ [δ, 1], the inequality

KL
(
S λS

∣∣∣∣∣∣∣∣ T λ
)
≥ 0

holds. Thus, the inclusion

λT ∈ arg min
λ∈[δ,1]

{
KL

(
S λS

∣∣∣∣∣∣∣∣ T λ
)}
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comes directly from the hypothesis. Let’s now assume that there exists another global
minimum λ∗ ∈ [δ, 1] such that

λ∗ ∈ arg min
λ∈[δ,1]

{
KL

(
S λS

∣∣∣∣∣∣∣∣ T λ
)}
,

which implies

KL
(
S λS

∣∣∣∣∣∣∣∣ T λ∗
)
= 0.

We now prove that, for almost every x ∈ [0, 1], tλ
T
(x) = tλ

∗

(x). Let’s start from tλ
∗

(x).
By definition of KL divergence,

= 0︷           ︸︸           ︷
KL

(
S λS

∣∣∣∣∣∣∣∣ T λ∗
)
=

∫ 1

0
sλ

S
(x) log

 sλ
S
(x)

tλ∗(x)

 dx

=−

∫ 1

0
sλ

S
(x) log

(
tλ
∗

(x)
sλS(x)

)
dx ≥−

∫ 1

0
sλ

S
(x)

(
tλ
∗

(x)
sλS(x)

− 1
)

dx =−

= 0︷                     ︸︸                     ︷∫ 1

0

(
tλ
∗

(x) − sλ
S
(x)

)
dx

where the only inequality comes from the property of logarithms log(x) ≤ x − 1 for
x ∈ (0, 1], and the final result is 0 because each integral is equal to 1. As a result, the
inequality turns out to be an equality and, for almost every x ∈ [0, 1], sλ

S
(x) = tλ

∗

(x).
By repeating the same procedure with tλ

T
(x) instead of tλ

∗

(x), we get that, for almost
every x ∈ [0, 1], sλ

S
(x) = tλ

T
(x). Because the union of two sets with measure equal to 0

is still a set with measure equal to 0 and by transitivity, we conclude that tλ
∗

(x) = tλ
T
(x)

for almost every x ∈ [0, 1]. By applying Theorem 13 to tλ
∗

and tλ
T
, we prove that

λ∗ = λT , meaning that the solution is unique. □

Theorem 14 proves that only one solution exists, so that if the sequence of estimated
predictive thresholds λT

m converges, then its limit is exactly the theoretical predictive
threshold λT .

Q2. Convergence of λcut distributions

Given that the λcut distribution is an actual probability density function (Prop. 3), the
following theorem shows that assuming that the target density tm converges uniformly
to the theoretical density t, then the same relationship holds for any of their λcut
distributions.

Theorem 15 (Uniform convergence of λcut distributions). Let tm, for any m ∈ N, be
a sequence of continuous probability density functions such that tm → t uniformly in
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[0, 1] for m→ +∞. Then, for any λ ∈ [δ, 1],

tλm
m→+∞
−−−−−→ tλ uniformly in [0, 1],

where tλm and tλ are λcut distributions as defined in definition 4.

Proof. Let’s fix ε > 0 and λ ∈ [δ, 1]. Since t is bounded, there exists a constant K ≥ 0
such that |t(x)| ≤ K for all x ∈ [0, 1]. As tm → t uniformly, there exists M1 ∈ N such
that

|tm(x) − t(x)| < 1 ∀ x ∈ [0, 1], m ≥ M1,

which is equivalent to

|tm(x)| < |t(x)| + 1 ≤ K + 1 ∀ x ∈ [0, 1], m ≥ M1.

Because of the uniform convergence of tm, which is continuous, bounded and with
integral equal to 1, the sequence

∫ λ

0 tm(z) dz converges to
∫ λ

0 t(z) dz and so does the
reciprocal sequence.

Thus, by definition, there exists M2 ∈ N such that∣∣∣∣∣∣∣∣ 1∫ λ

0 tm(z) dz
−

1∫ λ

0 t(z) dz

∣∣∣∣∣∣∣∣ < ε

2λ(K + 1)
∀m ≥ M2.

Likewise, given that tm converges uniformly to t, there exists M3 ∈ N such that

|tm(x) − t(x)| <
ε
∫ λ

0 t(z) dz

2λ
∀ x ∈ [0, 1], m ≥ M3.

Let’s indicate by M = max{M1,M2,M3}. For m ≥ M and x ∈ [0, 1],

∣∣∣tλm(x)−tλ(x)
∣∣∣=λ

∣∣∣∣∣∣∣∣ tm(x)∫ λ

0 tm(z)dz
−

t(x)∫ λ

0 t(z)dz

∣∣∣∣∣∣∣∣≤
∣∣∣∣∣∣∣∣ λtm(x)∫ λ

0 tm(z)dz
−
λtm(x)∫ λ

0 t(z)dz

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣ λtm(x)∫ λ

0 t(z)dz
−

λt(x)∫ λ

0 t(z)dz

∣∣∣∣∣∣∣∣
≤λ|tm(x)|

∣∣∣∣∣∣∣∣ 1∫ λ

0 tm(z)dz
−

1∫ λ

0 t(z)dz

∣∣∣∣∣∣∣∣+λ |tm(x)−t(x)|∫ λ

0 t(z)dz
≤
λ(K + 1)ε
2λ(K + 1)

+
λε

∫ λ

0 t(z)dz

2λ
∫ λ

0 t(z)dz
= ε,

where in the last step we exploit the previous inequalities. As a result, tλm → tλ

uniformly for any λ ∈ [δ, 1] when m→ +∞. □

Theorem 15 guarantees that the uniform convergence of the full density tm to t
(Assumption 1) is enough to claim that any λcut distribution of tm converges to the
corresponding λcut distribution of t.
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Q3. Convergence of KL Divergence

Given the uniform convergence of the λcut distributions, we still need to verify whether
their KL divergence converges, as expected, to the KL divergence of their limit.
The following theorem shows that the KL divergence and the limit symbol can be
interchanged.

Theorem 16 (Interchangeability of KL divergence and limit symbol). Let S , T and
Tm be three real continuous random variables with probability density functions,
respectively, s, t, tm : [0, 1]→ (0,+∞). Fix λS , λ ∈ [δ, 1], with δ > 0. Let sλ

S
, tλ and tλm

be λcut distributions. Assume that sλ
S
(x), tλ(x), tλm(x) > 0 for all x ∈ [0, 1], and that

tλm → tλ uniformly for all x ∈ [0, 1]. Then,

lim
m→+∞

KL
(
S λS

∣∣∣∣∣∣∣∣ T λ
m

)
= KL

(
S λS

∣∣∣∣∣∣∣∣ lim
m→+∞

T λ
m

)
= KL

(
S λS

∣∣∣∣∣∣∣∣ T λ
)
,

where S λS
, T λ and T λ

m are the unique variables with, respectively, sλ
S
, tλ and tλm as

probability density functions.

Proof. By definition,

KL
(
S λS

∣∣∣∣∣∣∣∣ T λ
m

)
=

∫ 1

0
sλ

S
(x) log

 sλ
S
(x)

tλm(x)

 dx. (A.2)

Because it is both positive and continuous, tλm takes its (positive) maximum and
minimum values on the interval [0, 1] and, therefore, the reciprocal function is bounded.
Following the same procedure as in Theorem 15, it is easy to prove that

sλ
S
(x)

tλm(x)
−→

sλ
S
(x)

tλ(x)
uniformly for x ∈ [0, 1].

Likewise, by exploiting the continuity of the logarithm function and both the continuity
and the boundedness of the λcut distributions, the following convergence naturally
holds for x ∈ [0, 1]

sλ
S
(x) log

 sλ
S
(x)

tλm(x)

 −→ sλ
S
(x) log

 sλ
S
(x)

tλ(x)

 uniformly.

Let’s now fix ε > 0. By definition of uniform convergence, there exists M ∈ N such
that, for all m ≥ M and for any x ∈ [0, 1],∣∣∣∣∣∣sλS

(x) log
 sλ

S
(x)

tλm(x)

 − sλ
S
(x) log

 sλ
S
(x)

tλ(x)

∣∣∣∣∣∣ < ε.
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Consequently, for all m ≥ M,∣∣∣∣∣KL
(
S λS

∣∣∣∣∣∣∣∣T λ
m

)
−KL

(
S λS

∣∣∣∣∣∣∣∣T λ
m

)∣∣∣∣∣=
∣∣∣∣∣∣
∫ 1

0
sλ

S
(x) log

 sλ
S
(x)

tλm(x)

 dx−
∫ 1

0
sλ

S
(x) log

 sλ
S
(x)

tλ(x)

 dx

∣∣∣∣∣∣
≤

∫ 1

0

∣∣∣∣∣∣sλS
(x) log

 sλ
S
(x)

tλm(x)

 − sλ
S
(x) log

 sλ
S
(x)

tλ(x)

∣∣∣∣∣∣ dx ≤ ε,

which proves the thesis. □

Provided that the limit can pass outside the KL divergence function, next we discuss
the convergence of the transfer predictive threshold when solving the optimization
problem at each step m ∈ N.

Q4. Interchangeability of arg min and limit

The final step to prove that the transfer threshold λT
m converges to the actual value λT

(first main result in Eq. 4.4) consists of exchanging the limit symbol with the argmin
function. Although in general the equality may not hold, in our scenario we only need
to show that one of the two inequalities is true. If we proved that

lim sup
m→+∞

arg min
λ∈[δ,1]

{
KL

(
S λS

∣∣∣∣∣∣∣∣ T λ
m

)}
⊆ arg min

λ∈[δ,1]

{
lim

m→+∞
KL

(
S λS

∣∣∣∣∣∣∣∣ T λ
m

)}
we could conclude through Theorem 14 that the right-hand side contains only one
solution and, in turn, that the equality holds. For this task, we first need to introduce
the following theorem, which states that the KL divergence is a continuous function
when the threshold λ varies in [δ, 1].

Theorem 17 (Continuity of KL divergence). Given two continuous random variables
S and Tm with probability density functions, respectively, s(x) and tm(x) defined on
[0, 1], and a constant δ > 0, then the function

gm(λ) B KL
(
S λS ∣∣∣∣∣∣T λ

m

)
is continuous in [δ, 1],

where S λS
and T λ

m are the random variable with, respectively, λcut distribution equal
to sλ

S
and tλm, as defined in definition 4.

Proof. By definition, for any λ ∈ [δ, 1],

tλm(x) = tm(λx) ·
λ∫ λ

0 tm(z) dz
.
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The reciprocal function of the integral depends on λ and is continuous because it is
bounded and tm is continuous with respect to both x and λ. Because the product of
continuous functions is still a continuous function, tλm(x) is continuous on [δ, 1]. As a
result,

gm(λ) =
∫ 1

0
sλ

S
(x) log

 sλ
S
(x)

tλm(x)

 dx =
∫ 1

0
sλ

S
(x)

[
log

(
sλ

S
(x)

)
− log

(
tλm(x)

)]
dx

=

∫ 1

0
sλ

S
(x) log

(
sλ

S
(x)

)
dx −

∫ 1

0
sλ

S
(x) log

(
tλm(x)

)
dx

is continuous on [δ, 1] because of combination of operations that preserve the continuity.
In the last line, only the second integral depends on λ through the function tλm(x), hence
preserving the continuity of the integrand function. Thus, gm(λ) is continuous. □

This guarantees that the hypotheses of the following theorem hold.

Theorem 18 (Interchangeability of arg min and limit symbol). Let gm : [δ, 1]→ R be a
continuous sequence of functions for a fixed δ > 0. Assume that gm converges pointwise
to a continuous function g : [δ, 1]→ R. Then,

lim sup
m→+∞

(
arg min
λ∈[δ,1]

gm(λ)
)
⊆ arg min

λ∈[δ,1]

(
lim

m→+∞
gm(λ)

)
= arg min

λ∈[δ,1]
g(λ).

Proof. To prove the result, we take an element in the set on the left-hand side and show
that the element belongs to the set on the right-hand side. Let λ̄ ∈ [δ, 1] be such that

λ̄ ∈ lim sup
m→+∞

(
arg min
λ∈[δ,1]

gm(λ)
)
.

Then, by definition of limit superior, for all m ∈ N, ∃K(m) ∈ N, K(m) ≥ m, such that
λ̄ ∈ arg minλ∈[δ,1] gK(m)(λ). For λ ∈ [δ, 1],

gK(m)(λ̄) ≤ gK(m) (λ) .

Given that lim
m→+∞

K(m) = +∞, the inequality

g(λ̄) = lim
m→+∞

gK(m)(λ̄) ≤ lim
m→+∞

gK(m)(λ) = g(λ)

holds for all λ ∈ [δ, 1]. As a result, λ̄ ∈ arg minλ∈[δ,1] g(λ). □

We apply this theorem by using gm(λ) = KL(S λS
||T λ

m), which is continuous according
to Theorem 17. In addition, the pointwise convergence to g(λ) = KL(S λS

||T λ) holds by
the Theorem 16.
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A.3 Experiments

Table A.1: The number of examples, variables, and the contamination factor for each
considered dataset. IoT datasets (last 9) contamination factor vary among a list of
values.

Dataset N d γ Dataset N d γ

store1-hour1 1703 11 0.1274 turbine-15 838 10 0.101
store1-hour2 1703 11 0.1192 turbine-21 385 10 0.078
store1-hour3 1703 11 0.1262 Webcam 2000 115 List
store1-hour4 1703 11 0.1315 Security Camera 838 2000 115 List
store2-hour1 1704 11 0.0370 Security Camera 737 2000 115 List
store2-hour2 1704 11 0.0082 Security Camera 1003 2000 115 List
store2-hour3 1704 11 0.0540 Security Camera 1002 2000 115 List
store2-hour4 1704 11 0.0769 Ennio Doorbell 2000 115 List
store3-hour1 1276 11 0.0337 Ecobee Thermostat 2000 115 List
store3-hour2 1276 11 0.0713 Danmini Doorbell 2000 115 List
store3-hour3 1276 11 0.0165 Baby Monitor 2000 115 List
store3-hour4 1276 11 0.0681

Table A.2: Comparison of the performance of TrADe, which uses an ensemble of
detectors to estimate the contamination factor, to a variant that only uses a single
detector. Performance is measured in terms of the accuracy of the estimate of γ as
measured by mean absolute error (MAE). We report the number of times TrADe wins
(lower MAE), draws (absolute differences ≤ 0.001), and loses (higher MAE) versus
each variant. Each variant is identified by the name of the considered anomaly detector.

TrADe MAE on γ
Variant Wins Draws Loses

kNNO 105 2 27
IF 74 5 55
CBLOF 91 5 38
COPOD 95 3 36
LODA 85 4 45
Vae 101 1 32
HBOS 113 1 20
SOD 101 9 24
Lscp 82 0 52

Total 847 30 329

Data. Table A.1 shows the properties of the 23 real-world anomaly detection datasets.
The water data are proprietary and shared with the researchers under an NDA. They
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Figure A.1: F1 relative improvement of TrADe over the baselines, divided by anomaly
detector h and averaged per target domain, over all the 206 experiments. Positive values
mean that TrADe performs better than the baseline. Overall, TrADe shows positive
F1 scores improvements against all the baselines in at least 16 target domains for 7 out
of 9 anomaly detectors. However, when averaging over the target domains, TrADe
performs worse than Sourceλ only when COPOD is used as an anomaly detector.

cannot be made public without consent of the providing company. The wind turbine
data can be downloaded from http://www.industrial-bigdata.com/Data [254].
The IoT data can be found at https://archive.ics.uci.edu/ml/datasets/
detection_of_IoT_botnet_attacks_N_BaIoT# [162, 164]. While water and
wind turbines data preserve their original structure, we subsample 2000 examples from
the IoT data setting the contamination factor as [0.03, 0.05, 0.08, 0.10, 0.15, 0.20, 0.25]
when used as source domain, and as 0.01 when used as target domain.

Hyperparameters. Because our goals are i) to recover the contamination factor, and
ii) prove the impact of more accurate estimates on the anomaly detector’s performance,
we select sensible hyperparameters and set the remaining as default1: kNNO has k = 5,
CBLOF has n_clusters = 5, HBOS has n_bins = 5, SOD has n_neighbors = 10 and
re f _set = 5, IF has n_estimators = 5, LODA has n_bins = 5 and n_random_cuts =

1implementation is available on PyOD: https://pyod.readthedocs.io/en/latest/

http://www.industrial-bigdata.com/Data
https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT#
https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT#
https://pyod.readthedocs.io/en/latest/
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100, Lscp has local_region_size = 20 and uses 3 LOF with k = 20, Vae has [30, 6, 6, 30]
as layer structure and epochs = 10, while COPOD has no hyperparameters.

Results (Q2). Figure A.1 shows the F1 relative improvement for each anomaly
detector h over all the 206 experiments, averaged by target domain. For 7 out of 9
anomaly detectors, TrADe performs on average better than each baseline in at least
16 out of 23 target domains. When using HBOS as anomaly detector, TrADe has
an average improvement between 11.5% and 21% against all the baselines, despite
showing negative improvements in 13 out of 23 experiments against Sourceλ.

Results (Q3). Table A.2 illustrates the difference between using TrADe and its
single-detector variants for estimating the contamination factor γ. Overall, TrADe
results in better estimates of the contamination factor (lower MAE) than the single-
detector variants. In the worst case, it wins 74 times and loses 55 times compared with
the IF variant.



Appendix B

Estimating the contamination
factor’s distribution in
unsupervised anomaly
detection

This Supplement contains additional details about the experiments of Chapter 5.
Specifically, we provide additional details on the datasets used, and we extend the
results of Q1, Q2, and Q3.

Data. Table B.1 shows the details of the used datasets. The datasets vary in terms of
the number of examples (from around 50 to more than 48000), the number of covariates
(from 5 to more than 1500), and the contamination factor (from around 0.004 to more
than 0.10). Note that even the highest contamination factor is around 0.10, confirming
the general assumption of anomalies being rare.

Q1-Q2. γGMM’s estimated distribution. Table B.2 shows the MAE between
γGMM’s sample mean and the true value γ∗ on a per-dataset basis. With respect to the
true value γ∗ and out of 22 experiments, the sample mean is:

• a good estimate (i.e., MAE ≤ 0.01) for 7 datasets (Cardiotocography, InternetAds,
Pima, SpamBase, T21, WPBC, Wilt);

135
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Dataset N d γ∗ Dataset N d γ∗

ALOI 12384 27 0.0304 Pima 526 8 0.0494
Annthyroid 7129 21 0.0749 Shuttle 1013 9 0.0128
Arrhythmia 271 259 0.0996 SpamBase 2661 57 0.0500
Cardiotocography 1734 21 0.0496 Stamps 340 9 0.0912
Glass 214 7 0.0421 T15 42125 10 0.0668
InternetAds 1682 1555 0.0499 T21 18509 10 0.0529
KDDCup99 48113 40 0.0042 WBC 223 9 0.0448
Lymphography 148 47 0.0405 WDBC 367 30 0.0272
PageBlocks 5473 10 0.1023 WPBC 160 33 0.0562
Parkinson 53 22 0.0943 Waveform 3443 21 0.0290
PenDigits 9868 16 0.0020 Wilt 4655 5 0.0200

Table B.1: Properties of the 22 datasets used. For each dataset, we report the number of
examples, the number of original covariates, and the ground-truth contamination factor.

Dataset γGMM’s mean γ∗ MAE Dataset γGMM’s mean γ∗ MAE

ALOI 0.059 0.030 0.029 Pima 0.039 0.049 0.010
Annthyroid 0.049 0.074 0.025 Shuttle 0.072 0.012 0.060
Arrhythmia 0.038 0.099 0.061 SpamBase 0.058 0.050 0.008
Cardiotocography 0.044 0.049 0.005 Stamps 0.062 0.091 0.028
Glass 0.071 0.042 0.029 T15 0.041 0.066 0.025
InternetAds 0.048 0.049 0.001 T21 0.049 0.052 0.003
KDDCup99 0.050 0.004 0.046 WBC 0.080 0.044 0.035
Lymphography 0.058 0.040 0.018 WDBC 0.065 0.027 0.038
PageBlocks 0.063 0.102 0.038 WPBC 0.063 0.056 0.006
Parkinson 0.071 0.094 0.023 Waveform 0.061 0.029 0.032
PenDigits 0.044 0.002 0.042 Wilt 0.026 0.020 0.006

Table B.2: Mean Absolute Error (MAE) between the true contamination factor and
γGMM’s sample mean for the 22 datasets.

• a slightly imprecise estimate (i.e., 0.01 < MAE ≤ 0.03) for 7 datasets (ALOI,
Annthyroid, Glass, Lymphography, Parkinson, Stamps, and T15);

• a not-optimal estimate (i.e., 0.03 < MAE ≤ 0.05) for 6 datasets (KDDCup99,
PageBlocks, PenDigits, WBC, WDBC, and Waveform);

• a bad estimate (MAE > 0.05) for just two datasets (Arrhythmia, and Shuttle).

This shows, again, that the estimated distribution is well-calibrated.

Q3. Selecting the anomaly detectors to compute the F1 score. Because we
aim to study the effect of the contamination factor on the detectors’ performance, we
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Dataset Anomaly Detectors

ALOI KNN
Annthyroid HBOS
Arrhythmia IForest-HBOS-COPOD
Cardiotocography KNN
Glass LOF
InternetAds LSCP
KDDCup99 COPOD
Lymphography KNN-LOF-OCSVM-HBOS
PageBlocks LOF
Parkinson LSCP-HBOS-COPOD-LSCP-HBOS-COPOD
PenDigits KNN-IForest-LOF-OCSVM-LSCP-Ae-VAE-HBOS-LODA-COPOD
Pima IForest
Shuttle KNN-OCSVM-Ae-VAE-HBOS-KNN-OCSVM-Ae-VAE-HBOS
SpamBase LSCP
Stamps LSCP
T15 OCSVM
T21 OCSVM
WBC KNN-LOF-OCSVM-LODA-COPOD
WDBC KNN-LOF-OCSVM-LSCP-Ae-VAE-LODA-COPOD
WPBC OCSVM
Waveform OCSVM
Wilt LOF

Table B.3: List of detectors with the greatest F1 score when using the true contamination
factor to set the threshold. For each dataset, we use such a subset of detectors to compute
the deterioration.

compare the F1 scores only over the detectors that work well for each of the datasets.
For each dataset D, we use as set of detectors those achieving the greatest F1 score
using the true contamination factor, i.e. arg max fm {F1( fm,D, γ∗)}. This means that,
for each dataset, we (1) use each detector separately to make predictions using the
true contamination factor γ∗, (2) measure their F1 score, (3) keep those detectors that
obtain the greatest F1, and (4) use them to compute the F1 deterioration using the
point-estimates of the contamination factor. Table B.3 lists the detectors used for each
dataset to compute the F1 deterioration. Observe that sometimes only a single detector
obtains the greatest F1 score, while sometimes several detectors get the same F1 score.

Q3. False alarms and false negatives. Finally, Table B.4 shows the false alarm
(false positive) rate and the false negative rate. The majority of the threshold estimators
provide extremely high estimates for the contamination factor, shown here as extremely
low false negative rates, but they would be useless in practice because of their high
false alarm rate. In fact, this metric is important as false alarms result in real costs
for the company (e.g., turning the wind turbine off to wait until the ice on the blades
melts down), while reducing trust in the detection system. Our method reduces the
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False Alarm Rate
Method Mean ± std.

Iqr 0.009 ± 0.008
Mtt 0.027 ± 0.024
γGMM 0.042±0.015
Qmcd 0.059 ± 0.018
Karch 0.147 ± 0.047
Chau 0.190 ± 0.035
Zscore 0.221 ± 0.050
Yj 0.390 ± 0.139
Filter 0.454 ± 0.054
Dsn 0.477 ± 0.134
Hist 0.513 ± 0.100
Fgd 0.533 ± 0.183
Aucp 0.591 ± 0.088
Mcst 0.611 ± 0.287
Gesd 0.616 ± 0.106
Regr 0.643 ± 0.105
Mad 0.731 ± 0.083
Clf 0.757 ± 0.077
Eb 0.785 ± 0.077
Wind 0.809 ± 0.076
Moll 0.816 ± 0.082
Boot 0.862 ± 0.079

False Negative Rate
Method Mean ± std

Boot 0.001 ± 0.002
Wind 0.001 ± 0.002
Moll 0.001 ± 0.002
Eb 0.001 ± 0.003
Mad 0.002 ± 0.003
Clf 0.002 ± 0.003
Gesd 0.003 ± 0.005
Regr 0.003 ± 0.005
Aucp 0.004 ± 0.006
Hist 0.006 ± 0.008
Fgd 0.007 ± 0.011
Dsn 0.007 ± 0.009
Filter 0.007 ± 0.009
Mcst 0.007 ± 0.012
Yj 0.009 ± 0.010
Zscore 0.017 ± 0.015
Chau 0.019 ± 0.016
Karch 0.021 ± 0.018
Qmcd 0.034 ± 0.024
γGMM 0.036 ± 0.025
Mtt 0.042 ± 0.028
Iqr 0.044 ± 0.029

Table B.4: Mean and standard deviation of the false alarm rate (left) and false negative
rate (right) obtained by using each method’s γ estimate to set the threshold (the lower
the better). On the false alarms, γGMM has the third best mean and outperforms Qmcd
and Karch, which are the second and third best baseline when measuring the F1 score.
On the other hand, γGMM obtains higher false negative rates than most competitors,
because the threshold estimators overestimate the true contamination factor.

false alarm rate compared to most of the baselines, including Qmcd and Karch that
achieve the second and third best F1 scores on average. On the other hand, Iqr and
Mtt have the lowest false positive rates, due to the fact that they often underestimate
the contamination factor as supported by the false negative table.



Appendix C

Unsupervised Anomaly
Detection with Rejection

In this Appendix we consider Chapter 7 and (1) provide additional theorems and proofs
for Section 7.1, and (2) further describe the experimental results.

C.1 Theoretical Results

Firstly, we provide the proof for Theorem 8.

Theorem 8 (Analysis of ExCeeD) Let s be an anomaly score, and ψN ∈ [0, 1] the
proportion of training scores ≤ s. For T ≥ 4, there exist t1 = t1(N, γ,T ) ∈ [0, 1],
t2 = t2(N, γ,T ) ∈ [0, 1] such that

ψN ∈ [t1, t2] =⇒ Ms ≤ 1 − 2e−T .

Proof. We split this proof into two parts: we show that the reverse inequalities, i.e. that
(a) if ψN ≤ t1, then Ms ≥ 1 − 2e−T , and (b) if ψN ≥ t2, then Ms ≥ 1 − 2e−T , hold and
prove the final statement because P(Ŷ = 1|s) is monotonic increasing on s.

(a) The probability P(Ŷ = 1|s) can be seen as the cumulative distribution F of a
binomial random variable B(qs,N) with at most Nγ − 1 successes out of N trials, with
qs =

N(1−ψN )+1
2+N as the success probability. By applying Hoeffding’s inequality, we

139
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obtain the upper bound

P(Ŷ∗ = 1|s) ≤ exp

−2N
(

N(1 − ψN) + 1
2 + N

−
Nγ − 1

N

)2
that holds for the constraint ψN ≤

2+N
N2 +

1−2γ
N + (1 − γ). Because P(Ŷ∗ = 1|s) ≤ e−T

implies that Ms ≥ 1 − 2e−T , we search for the values of ψN such that the upper bound
is ≤ e−T . Forcing the upper bound ≤ e−T results in

2N
(

N(1 − ψN) + 1
2 + N

−
Nγ − 1

N

)2

− T ≥ 0,

which is satisfied for (I1) 0 ≤ ψN ≤ A1 −
√

B1 and (I2) A1 +
√

B1 ≤ ψN ≤ 1, where

A1 =
2 + N(N + 1)(1 − γ)

N2 , B1 =
2N

(
−3γ2 − 2N(1 − γ)2 + 4γ − 3

)
+ T (N + 2)2 − 8

2N3 .

However, for T ≥ 4, no values of N, γ, and T that satisfy the constraint on ψN also
satisfy I2. Moving to I1, we find out that if ψN satisfies I1, then it also satisfies the
constraint on ψN for any N, γ, and T . Therefore, we we set t1(N, γ,T ) = A1 −

√
B1. As

a result,
ψN ≤ t1 =⇒ P(Ŷ∗ = 1|s) ≤ e−T =⇒ Ms ≥ 1 − 2e−T .

(b) Similarly, P(Ŷ∗ = 0|s) can be seen as the cumulative distribution F of B(ps,N),
with N(1 − γ) successes and ps =

1+NψN (s)
2+N . By seeing the binomial as a sum of

Bernoulli random variables, and using the property of its cumulative distribution
F(N(1− γ),N, ps)+ F(Nγ − 1,N, 1− ps) = 1, we apply the Hoeffding’s inequality and
compare such upper bound to the e−T . We obtain

2N
(

1 + ψN N
2 + N

− (1 − γ)
)2

− T ≥ 0

that holds with the constraint ψN ≥
(2+N)(1−γ)−1

N . The quadratic inequality in ψN

has solutions for (I1) 0 ≤ ψN ≤ A2 −
√

B2 and (I2) A2 +
√

B2 ≤ ψN ≤ 1, where
A2 =

(2+N)(1−γ)−1
N , and B2 =

T (N+2)2

2N3 . However, the constraint limits the solutions to I2,
i.e. for ψN ≥ A2 +

√
B2. Thus, we set t2(N, γ,T ) = A2 +

√
B2 and conclude that

ψN ≥ t2 =⇒ P(Ŷ∗ = 1|s) ≥ 1 − e−T =⇒ Ms ≥ 1 − 2e−T .

□

Secondly, Theorem 11 relies on two important results: given S the anomaly score
random variable, (1) if ψN was the theoretical cumulative of S , it would have a uniform
distribution (Theorem 19), but because in practice (2) ψN is the empirical cumulative
of S , its distribution is close to uniform with high probability (Theorem 20). We prove
these results in the following theorems.
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Theorem 19. Let S be the anomaly score random variable, and ψ = FS (S ) be the
cumulative distribution of S applied to S itself. Then ψ ∼ Uni f (0, 1).

Proof. We prove that, if ψ ∼ Uni f (0, 1), then Fψ(t) = t for any t ∈ [0, 1]:

Fψ(t) = P(ψ ≤ t) = P(FS (S ) ≤ t) = P(S ≤ F−1
S (t)) = FS (F−1

S (t)) = t,

which implies that ψ ∼ Uni f (0, 1). □

Theorem 20. Let ψ be as in Theorem 19, and FψN be its empirical distribution obtained
from a sample of size N. For any small δ > 0 and t ∈ [0, 1], with probability > 1 − δ

FψN (t) ∈

Fψ(t) −

√
ln 2

δ

2N
, Fψ(t) +

√
ln 2

δ

2N

 .
Proof. For any ε > 0, the DKW inequality implies

P

(
sup

t∈[0,1]
|FψN (t) − Fψ(t)| > ε

)
≤ 2 exp

(
−2Nε2

)
.

By setting δ = 2 exp
(
−2Nε2

)
, i.e. ε =

√
ln 2

δ

2N , and using the complementary probability
we conclude that

P

 sup
t∈[0,1]

|FψN (t) − Fψ(t)| ≤

√
ln 2

δ

2N

 > 1 − δ.

□

C.2 Experiments

Data. Table C.1 shows the properties of the 34 datasets used for the experimental
comparison, in terms of number of examples, features, and contamination factor γ. The
datasets can be downloaded in the following link: https://github.com/Minqi824/
ADBench/tree/main/datasets/Classical.

Q1. RejEx against the baselines. Table C.2 shows the results (mean ± std)
aggregated by detectors in terms of cost per example (UP) and ranking position
(BOTTOM). Results confirm that RejEx obtains an average cost per example lower than
all the baselines for 9 out of 12 detectors, which is similar to the runner-up SS-Repen
for the remaining 3 detectors. Moreover, RejEx has always the best (lowest) average
ranking position.

https://github.com/Minqi824/ADBench/tree/main/datasets/Classical
https://github.com/Minqi824/ADBench/tree/main/datasets/Classical
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Dataset N d γ Dataset N d γ

Aloi 20000 27 0.0315 Optdigits 5198 64 0.0254
Annthyroid 7062 6 0.0756 PageBlocks 5393 10 0.0946
Campaign 20000 62 0.1127 Pendigits 6870 16 0.0227
Cardio 1822 21 0.0960 Pima 768 8 0.3490
Cardiotocography 2110 21 0.2204 Satellite 6435 36 0.3164
Census 20000 500 0.0854 Satimage 5801 36 0.0119
Donors 20000 10 0.2146 Shuttle 20000 9 0.0725
Fault 1941 27 0.3467 Thyroid 3656 6 0.0254
Fraud 20000 29 0.0021 Vertebral 240 6 0.1250
Glass 213 7 0.0423 Vowels 1452 12 0.0317
Http 20000 3 0.0004 Waveform 3443 21 0.0290
InternetAds 1966 1555 0.1872 WBC 223 9 0.0448
Landsat 6435 36 0.2071 WDBC 367 30 0.0272
Letter 1598 32 0.0626 Wilt 4819 5 0.0533
Lymphography 148 18 0.0405 Wine 129 13 0.0775
Mammography 7848 6 0.0322 WPBC 198 33 0.2374
Musk 3062 166 0.0317 Yeast 1453 8 0.3310

Table C.1: Properties (number of examples N, features d, and contamination factor γ)
of the 34 benchmark datasets used for the experiments.

Q2. Varying the costs c f p, c f n, cr. Table C.3 and Table C.4 show the average
cost per example and the ranking position (mean ± std) aggregated by detectors for
three representative cost functions, as discussed in the paper. Results are similar in all
three cases. For high false positives cost (c f p = 10), RejEx obtains an average cost
per example lower than all the baselines for 11 out of 12 detectors and always the best
average ranking position. For high false negative cost (c f n = 10) as well as for low
rejection cost (c f p = 5, c f n = 5, cr = γ), it has the lowest average cost for all detectors
and always the best average ranking. Moreover, when rejection is highly valuable (low
cost), RejEx’s cost has a large gap with respect to the baselines, which means that it is
particularly useful when rejection is less expensive.
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Table C.2: Top: Cost per example (mean ± std) ×10 per detector aggregated over the
datasets. Results show that RejEx obtains a lower average cost for 9 out of 12 detectors
and a similar average cost as the runner-up SS-Repen for the remaining 3 detectors.
Moreover, RejEx has the best overall average (last row). Bottom: Ranking positions
(mean ± std) per detector aggregated over the datasets. Results show that RejEx obtains
always the lowest average rank, despite being close to the runner-up SS-Repen when
the detector is LODA.
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Table C.3: Cost per example (mean ± std) per detector aggregated over the datasets.
The table is divided into three parts, where each part has different costs (false positives,
false negatives, rejection). Results show that RejEx obtains a lower average cost in all
cases but one (KDE).
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Table C.4: Rankings (mean ± std) per detector aggregated over the datasets, where
lower positions mean lower costs (better). The table is divided into three parts, where
each part has different costs for false positives, false negatives, and rejection. RejEx
obtains the lowest (best) average ranking position for all the detectors and all cost
functions.





Bibliography

[1] M. R. Abbas, M. S. A. Nadeem, A. Shaheen, A. A. Alshdadi, R. Alharbey, S.-O. Shim, and W. Aziz.
“Accuracy rejection normalized-cost curves (ARNCCs): A novel 3-dimensional framework for
robust classification”. In: IEEE Access 7 (2019), pp. 160125–160143.

[2] N. Abe, B. Zadrozny, and J. Langford. “Outlier detection by active learning”. In: Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM.
2006, pp. 504–509.

[3] B. Afsari. “Riemannian Lp center of mass: existence, uniqueness, and convexity”. In: Proceedings
of the American Mathematical Society 139.2 (2011), pp. 655–673.

[4] C. C. Aggarwal. “An introduction to outlier analysis”. In: Outlier analysis. Springer, 2017, pp. 1–
34.

[5] M. Ahmed, N. Choudhury, and S. Uddin. “Anomaly detection on big data in financial markets”.
In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining 2017. 2017, pp. 998–1001.

[6] M. Ahmed, A. N. Mahmood, and M. R. Islam. “A survey of anomaly detection techniques in
financial domain”. In: Future Generation Computer Systems 55 (2016), pp. 278–288.

[7] R. Alaiz-Rodríguez and N. Japkowicz. “Assessing the impact of changing environments on
classifier performance”. In: Advances in Artificial Intelligence: 21st Conference of the Canadian
Society for Computational Studies of Intelligence, Canadian AI 2008 Windsor, Canada, May 28-30,
2008 Proceedings 21. Springer. 2008, pp. 13–24.

[8] M. J. Alrawashdeh. “An adjusted Grubbs’ and Generalized Extreme Studentized Deviation”. In:
Demonstratio Mathematica 54.1 (2021), pp. 548–557.

[9] D. Amagata, M. Onizuka, and T. Hara. “Fast and exact outlier detection in metric spaces: a
proximity graph-based approach”. In: Proceedings of the 2021 International Conference on
Management of Data. 2021, pp. 36–48.

[10] F. Angiulli and C. Pizzuti. “Fast outlier detection in high dimensional spaces”. In: European
conference on principles of data mining and knowledge discovery. Springer. 2002, pp. 15–27.

[11] N. Archana and S. Pawar. “Periodicity Detection of Outlier Sequences using Constraint Based
Pattern Tree with MAD”. In: International Journal of Advanced Studies in Computers, Science
and Engineering 4.6 (2015), p. 34.
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