Lorenzo Perini
Home
Experience
Grants & Awards
Publications
Thesis Advisor
Talks
Program Committee
Publications
Type
Conference paper
Date
2024
2023
2022
2021
2020
2019
Unsupervised anomaly detection with rejection
Lorenzo Perini
,
Jesse Davis
Uncertainty-aware Evaluation of Auxiliary Anomalies with the Expected Anomaly Posterior
Lorenzo Perini
,
Maja Rudolph
,
Sabrina Schmedding
,
Chen Qiu
Semi-Supervised Isolation Forest for Anomaly Detection
Luca Stradiotti
,
Lorenzo Perini
,
Jesse Davis
Machine learning with a reject option: A survey
Kilian Hendrickx
,
Lorenzo Perini
,
Dries Van der Plas
,
Wannes Meert
,
Jesse Davis
Deep neural network benchmarks for selective classification
Andrea Pugnana
,
Lorenzo Perini
,
Jesse Davis
,
Salvatore Ruggieri
Combining Active Learning and Learning to Reject for Anomaly Detection
Luca Stradiotti
,
Lorenzo Perini
,
Jesse Davis
Semi-supervised learning from active noisy soft labels for anomaly detection
Timo Martens
,
Lorenzo Perini
,
Jesse Davis
Learning from positive and unlabeled multi-instance bags in anomaly detection
Lorenzo Perini
,
Vincent Vercruyssen
,
Jesse Davis
How to allocate your label budget? choosing between active learning and learning to reject in anomaly detection
Lorenzo Perini
,
Daniele Giannuzzi
,
Jesse Davis
Estimating the contamination factor’s distribution in unsupervised anomaly detection
Lorenzo Perini
,
Paul-Christian Bürkner
,
Arto Klami
Detecting evasion attacks in deployed tree ensembles
Laurens Devos
,
Lorenzo Perini
,
Wannes Meert
,
Jesse Davis
Transferring the contamination factor between anomaly detection domains by shape similarity
Lorenzo Perini
,
Vincent Vercruyssen
,
Jesse Davis
Multi-domain active learning for semi-supervised anomaly detection
Vincent Vercruyssen
,
Lorenzo Perini
,
Wannes Meert
,
Jesse Davis
The effect of hyperparameter tuning on the comparative evaluation of unsupervised anomaly detection methods
Jonas Soenen
,
Elia Van Wolputte
,
Lorenzo Perini
,
Vincent Vercruyssen
,
Wannes Meert
,
Jesse Davis
,
Hendrik Blockeel
Quantifying the confidence of anomaly detectors in their example-wise predictions
Lorenzo Perini
,
Vincent Vercruyssen
,
Jesse Davis
Class Prior Estimation in Active Positive and Unlabeled Learning.
Lorenzo Perini
,
Vincent Vercruyssen
,
Jesse Davis
A ranking stability measure for quantifying the robustness of anomaly detection methods
Lorenzo Perini
,
Connor Galvin
,
Vincent Vercruyssen
Predictive Maintenance for off-road vehicles based on Hidden Markov Models and Autoencoders for trend Anomaly Detection
Lorenzo Perini
Cite
×